
Index code  
 
msg of length        bits. 
EC = bitwise XOR over indices of active (1) bits in msg (indices start at 1) 
 
example:   
  msg  = 0110110    (k=23-1) 
    indices   1 2 3 4 5 6 7 

 
         2= 010     
         3= 011   
         5=   101   
         6=   110 
         EC= 010 
    
  transmission = 0110110010 
 
 
Question |EC|= O(…)?   
 decimal x is represented by             bits.  
  
               since        

          
 
 So we add logarithmically many bits: n =           
 (worse than O(1) for parity, better then O(k) for repetition): 
  
 
Question:  d=? 
 d>=2: It is not possible to have 2 (legal) codewords of distance 1: 

If two msgs differ in 1 bit, their EC must be different (The ECs will differ 

exactly in the positions where the binary representation of the different bit 

contains 1) 

d<=2:  We give an example of two (legal) codewords of distance 2: 
0000000000 and 0001000100. (any index which is power of 2 would work) 

 
d=2 

 Can detect 1 error, fix 0.  

msg EC 



First improvement: transmit EC twice. 

The new distance is d=3.  
Proof is very similar to previous one. We need to show also that 
two changes in msg cannot cancel each other, and must lead to at least one change in both 
EC1 and EC2. 
 
Since d=3 we can fix 1 error. 
 
 
Decoding algorithm (assumes at most 1 error has occurred): 
  
 
 
 
 
 
 
 
 
 
 
  
 
 
 Example: 

                                

                                   

                       

                              

                                         

                

  
Which is true for the case of 2 errors? 

a) Our algorithm will never return the correct msg 
b) Our algorithm will sometimes return the correct msg 
c) Our algorithm will always return the correct msg 

 
The answer is b): 
 
A case in which we’ll return the correct msg: 2 errors in the same EC (will return msg on line 
3).  
A case in which we’ll return a wrong msg: mis-fixing when 2 errors in msg.  

Example: We use the same transmission from above, but with bits 2,5 flipped due to 
errors: 0010010010010  
EC': 3 6 = 011 110 = 101  
We would conclude a single error at             (which is 7 in decimal) and return 
0010011 (now with 3 errors). 

msg EC1 EC2 

decode (trans = msg+EC1+EC2): 

1. compute EC ' from msg 

2. if EC ' = EC1 or EC ' = EC2          #if both, then 0 errors 

3. return msg   # no error in data 

4. else:     # EC1 = EC2, single error in msg 

5. i = EC '   EC1   # or  EC2, doesn't matter. Index of error. 

5. i = int(i,2)  #to decimal 

6. return          +                        +          #bit i flipped 



Second Improvement: add parity bit at the end. 

 
Claim: The distance of the code is d=4.  
 
Proof outline: Before, when d=3, the closest codewords were 3 bits apart. Because they 
differed in an odd number of bits, their parity bits are different, and so the total distance 
between them (including the parity) is now 4. In addition, the distance between all other 
codeword pairs cannot decrease following the addition of a new bit, and therefore the code 
distance increased by 1. 
 
In general, if a certain code has distance d, the addition of a parity bit will create a new code 
with distance d', such that: 

- If the original distance d was odd, then the new distance will be d' = d+1 
- If the original distance d was even, then the new distance will be d' = d (distance will 

not change). 
 
Since d=4, we can detect 3 errors, fix 1 error. 
 
 
 
Question: How should we interpret each of these scenarios? Assume that at most 2 errors 
have occurred. 
 

EC = EC1 = EC2 ? Parity OK ? #errors 

True True 0 

True False 1* 

False True 2 

False False 1 

 
* if error was in parity bit 

 
 
How would 3 errors look like? 
 

EC = EC1 = EC2 ? Parity OK ? 

True/False False 

 
For example:  When 3 errors in msg yield the same EC:   

                                     
We might consider 3 errors as 1, and insert a fourth error. 

 

msg EC1 EC2 p 


