
Index code

msg of length bits.
EC = bitwise XOR over indices of active (1) bits in msg (indices start at 1)

example:
 msg = 0110110 (k=23-1)
 indices 1 2 3 4 5 6 7

 2= 010
 3= 011
 5= 101
 6= 110
 EC= 010

 transmission = 0110110010

Question |EC|= O(…)?
 decimal x is represented by bits.

 since

 So we add logarithmically many bits: n =
 (worse than O(1) for parity, better then O(k) for repetition):

Question: d=?
 d>=2: It is not possible to have 2 (legal) codewords of distance 1:

If two msgs differ in 1 bit, their EC must be different (The ECs will differ

exactly in the positions where the binary representation of the different bit

contains 1)

d<=2: We give an example of two (legal) codewords of distance 2:
0000000000 and 0001000100. (any index which is power of 2 would work)

d=2

 Can detect 1 error, fix 0.

msg EC

First improvement: transmit EC twice.

The new distance is d=3.
Proof is very similar to previous one. We need to show also that
two changes in msg cannot cancel each other, and must lead to at least one change in both
EC1 and EC2.

Since d=3 we can fix 1 error.

Decoding algorithm (assumes at most 1 error has occurred):

 Example:

Which is true for the case of 2 errors?

a) Our algorithm will never return the correct msg
b) Our algorithm will sometimes return the correct msg
c) Our algorithm will always return the correct msg

The answer is b):

A case in which we’ll return the correct msg: 2 errors in the same EC (will return msg on line
3).
A case in which we’ll return a wrong msg: mis-fixing when 2 errors in msg.

Example: We use the same transmission from above, but with bits 2,5 flipped due to
errors: 0010010010010
EC': 3 6 = 011 110 = 101
We would conclude a single error at (which is 7 in decimal) and return
0010011 (now with 3 errors).

msg EC1 EC2

decode (trans = msg+EC1+EC2):

1. compute EC ' from msg

2. if EC ' = EC1 or EC ' = EC2 #if both, then 0 errors

3. return msg # no error in data

4. else: # EC1 = EC2, single error in msg

5. i = EC ' EC1 # or EC2, doesn't matter. Index of error.

5. i = int(i,2) #to decimal

6. return + + #bit i flipped

Second Improvement: add parity bit at the end.

Claim: The distance of the code is d=4.

Proof outline: Before, when d=3, the closest codewords were 3 bits apart. Because they
differed in an odd number of bits, their parity bits are different, and so the total distance
between them (including the parity) is now 4. In addition, the distance between all other
codeword pairs cannot decrease following the addition of a new bit, and therefore the code
distance increased by 1.

In general, if a certain code has distance d, the addition of a parity bit will create a new code
with distance d', such that:

- If the original distance d was odd, then the new distance will be d' = d+1
- If the original distance d was even, then the new distance will be d' = d (distance will

not change).

Since d=4, we can detect 3 errors, fix 1 error.

Question: How should we interpret each of these scenarios? Assume that at most 2 errors
have occurred.

EC = EC1 = EC2 ? Parity OK ? #errors

True True 0

True False 1*

False True 2

False False 1

* if error was in parity bit

How would 3 errors look like?

EC = EC1 = EC2 ? Parity OK ?

True/False False

For example: When 3 errors in msg yield the same EC:

We might consider 3 errors as 1, and insert a fourth error.

msg EC1 EC2 p

