
Index code

msg of length 𝑘 = 2𝑚 − 1 bits.
EC = bitwise XOR over indices of active (1) bits in msg (indices start at 1)

example:
 msg = 0110110 (k=23-1)
 indices 1 2 3 4 5 6 7

 2= 010 ⨁
 3= 011 ⨁
 5= 101 ⨁
 6= 110
 EC= 010

 transmission = 0110110010

Question |EC|= O(…)?
 decimal x is represented by ⌊log2(𝑥)⌋ + 1 bits.

 |𝑬𝑪| = 𝑶(𝒎) since ⌊log2(2𝑚 − 1)⌋ + 1 = 𝑚

 So we add logarithmically many bits: n = 2𝑚 − 1 + 𝑂(𝑚)
 (worse than O(1) for parity, better then O(k) for repetition):

Question: d=?
 d>=2: It is not possible to have 2 (legal) codewords of distance 1:

If two msgs differ in 1 bit, their EC must be different (The ECs will differ

exactly in the positions where the binary representation of the different bit

contains 1) → overall: at least 2 differences between the two codewords.

d<=2: We give an example of two (legal) codewords of distance 2:
0000000000 and 0001000100. (any index which is power of 2 would work)

➔d=2

 Can detect 1 error, fix 0.

msg EC

First improvement: transmit EC twice.

The new distance is d=3.
Proof is very similar to previous one. We need to show also that
two changes in msg cannot cancel each other, and must lead to at least one change in both
EC1 and EC2.

 d>=3: It is not possible to have 2 (legal) codewords of distance < 3:

- If two msgs differ in 1 bit, their EC1 must be different (The ECs will differ

exactly in the positions where the binary representation of the different bit

contains 1). The same holds for EC2. → overall: at least 3 differences

between the two codewords.

- If two msgs differ in 2 bits, both their EC1 and EC2 will differ in at least one

bit (because two different indices cannot cancel each other in the EC

computation). → overall: at least 4 differences between the two codewords.

d<=3: We give an example of two (legal) codewords of distance 2:

0000000000000 and 0001000100100. (any index which is power of 2 would
work)

➔d=3

 Can detect 2 error, fix 1.

Decoding algorithm (assumes at most 1 error has occurred):

 Example:

𝒆𝒏𝒄𝒐𝒅𝒊𝒏𝒈: 0110110 → 0110110010010

𝒆𝒓𝒓𝒐𝒓: 0110110010010 → 0110010010010

𝒅𝒆𝒄𝒐𝒅𝒊𝒏𝒈: 0110010010010

𝐸𝐶′ = 2 ⊕ 3 ⊕ 6 = 010 ⊕ 011 ⊕ 110 = 111 ≠ 010

𝑐𝑜𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛: 𝑒𝑟𝑟𝑜𝑟 𝑎𝑡 𝑏𝑖𝑡 111 ⊕ 010 = 101 (= 5)

𝒓𝒆𝒕𝒖𝒓𝒏: 0110110

msg EC1 EC2

decode (trans = msg+EC1+EC2):

1. compute EC ' from msg

2. if EC ' = EC1 or EC ' = EC2 #if both, then 0 errors

3. return msg # no error in data

4. else: # EC1 = EC2, single error in msg

5. i = EC ' ⊕ EC1 # or ⊕EC2, doesn't matter. Index of error.

5. i = int(i,2) #to decimal

6. return 𝑚𝑠𝑔[: 𝑖 − 1]+ 𝑚𝑠𝑔[𝑖 − 1]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑚𝑠𝑔[𝑖:] #bit i flipped

In case 2 errors have occurred, our algorithm may sometimes return the wrong msg.
Example: We use the same transmission from above, but with bits 2,5 flipped due to
errors: 0010010010010
EC': 3⨁6 = 011⨁110 = 101
We would conclude a single error at 101 ⊕ 010 = 111 (which is 7 in decimal) and return
0010011 (now with 3 errors).

Second Improvement: add parity bit at the end.

Claim: The distance of the code is d=4.

Proof outline: Before, when d=3, the closest codewords were 3 bits apart. Because they
differed in an odd number of bits, their parity bits are different, and so the total distance
between them (including the parity) is now 4. In addition, the distance between all other
codeword pairs cannot decrease following the addition of a new bit, and therefore the code
distance increased by 1.

In general, if a certain code has distance d, the addition of a parity bit will create a new code
with distance d', such that:

- If the original distance d was odd, then the new distance will be d' = d+1
- If the original distance d was even, then the new distance will be d' = d (distance will

not change).

Claim: After the addition of the parity bit, the distance between every two codewords is
always even.

Since d=4, we can detect 3 errors, fix 1 error.

msg EC1 EC2 p

