
Extended Introduction to Computer Science
CS1001.py

Complexity and the 𝑂(⋅) Notation

* Slides based on a course designed by Prof. Benny Chor

Chapter C
Lecture 8b

Amir Rubinstein, Michal Kleinbort

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

http://tau-cs1001-py.wikidot.com/

Time Complexity: Basic Notions
• A computational problem is a relation between input and its

corresponding output (or mathematically, function parameters and
function value)

• An algorithm is a step-by-step procedure, a “recipe”
• can be represented in pseudo-code, diagrams, animations, etc.
• an abstract notion, can be implemented as a computer program

• Efficient algorithms are normally preferred
• fastest – time complexity
• most economical in terms of memory – space/memory complexity

• Time complexity analysis:
• measured in terms of operations, not actual time

• We want to say something about the algorithm, not a specific
machine/execution/programming language implementation

• but can be accompanied by actual time measurements
• expressed as a function of the problem input size
• often distinguish best/worst case inputs

2

Comments on Time complexity Analysis

• So far we analyzed time efficiency in terms of the number of
iterations, rather than counting operations.

• What underlying assumption justified this?

• An underlying assumption: the number of operations in each
iteration is bounded by some constant.
• Note that by “operations” we refer to basic ones, such as reading a variable from

memory, comparing two computer words, etc.

• Such operations may require different amount of time on different machines /
operating systems or even different executions on the same computer

• Pay attention! This assumption does not always hold (examples?)

3

Defining Time Complexity

 We will be interested in how the number of operations changes
with input size.

 In most cases, we will not care about the exact function, but in its
“order”, or growth rate (e.g., logarithmic, linear, quadratic, etc.)

 Sometimes we will only be interested/able to give an upper
bound for this growth rate. We will, however, strive to make this
upper bound as tight (=low) as we can.
 In this course, we will almost always be able to give tight upper bounds.

 So we need some formal definition for ”upper bound for the
growth rate of the number of operations, as a function of input
size”.

4

“Big O” Notation
• Let 𝑓(𝑛) denote the number of operations an algorithm

performs on an input of size 𝑛.

• We say that 𝑓(𝑛) belongs to 𝑂(𝑔 𝑛) if there exists a constant
𝑐 such that for large enough 𝑛,

𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)

• This is denoted by 𝑓 𝑛 ∈ 𝑂(𝑔 𝑛)
• Also commonly denoted by 𝑓(𝑛) = 𝑂(𝑔(𝑛))

• = is abused and does not mean equality

• Alternatively, 𝑓(𝑛) may denote the number of memory cells
required by the algorithm on an input of size 𝑛

5

Big O Notation – Visualized

6

𝑓 𝑛 = 𝑂(𝑔 𝑛)

𝑓(𝑛)

𝑐 ∙ 𝑔(𝑛)

Big O Notation - Examples

• 3𝑛 + 7 = 𝑂 𝑛

• 3𝑛 + 7 = 𝑂(𝑛2) *

• 3𝑛 + 7 ≠ 𝑂(√𝑛)

• 5𝑛 ∙ log2𝑛 + 1 = 𝑂(𝑛 log 𝑛) [where did the log base disappear?]

• 6log2𝑛 = 𝑂(𝑛) *

• 2log2𝑛 + 12 = 𝑂(𝑛) *

• 1000 ∙ 𝑛 ∙ log2 𝑛 = 𝑂(𝑛2) *

• 3𝑛 ≠ 𝑂(2𝑛)

• 2𝑛/100 ≠ 𝑂(𝑛100)

7 * not the tightest possible bound

The Asymptotic Nature of Big 𝑂
• Consider the two functions 𝑓(𝑛) = 10𝑛log2 𝑛 + 1, and

𝑔 𝑛 = 𝑛2 ⋅ (2 + sin(𝑛)/3) + 2

• It is not hard to verify that 𝑓(𝑛) = 𝑂(𝑔 𝑛).

• Yet, for small values of 𝑛, 𝑓(𝑛) > 𝑔(𝑛), as can be seen in the following plot:

8

𝑓(𝑛)

𝑔(𝑛)

The Asymptotic Nature of Big 𝑂 (cont.)

• But for large enough 𝑛, indeed 𝑓 𝑛 ≤ 1 ⋅ 𝑔(𝑛), as can be seen in the next
plot:

9

• Also, remember that for big 𝑂, 𝑓(𝑛) may be larger than 𝑔(𝑛), as long as
there is a constant 𝑐 such that 𝑓 𝑛 ≤ 𝑐 ∙ 𝑔(𝑛).

𝑓(𝑛)

𝑔(𝑛)

10

Summary of Some Previous Results

• All these results refer to worst case scenarios.

• Algorithms we saw on sequences:
• Palindrome checking on a string of length 𝑛 takes 𝑂(𝑛) iterations

• Binary search on a sorted list of length 𝑛 takes 𝑂(𝑙𝑜𝑔𝑛) iterations

• Selection Sort on a list of length 𝑛 takes 𝑂(𝑛2) iterations

• Merging 2 sorted lists of sizes 𝑛 and 𝑚 takes 𝑂(𝑛 + 𝑚) iterations

• Algorithms we saw on integers:
• Addition of two 𝑛-bit integers takes 𝑂(𝑛) iterations

• Multiplication of two 𝑛-bit integers takes 𝑂(𝑛2) iterations

11

Input Size - Clarifications
• We measure complexity as a function of the input size.

• For integers, input size is the number of bits in the
representation of the number in the computer.
• we normally count the number of "simple" bit operations (such as

adding or multiplying two bits).

• For lists/strings/dictionaries/other collections, the input size is
typically the number of elements in the collection.
• We normally consider "simple" operations on these elements (such as

comparisons, assignments) to take a constant amount of time.
• There are exceptions to this, however (see example on the next slide).

12

Input Size – Clarifications (cont.)

• Recall that Selection Sort on a list of 𝑛 elements runs in 𝑂 𝑛2 time.

• But what if the elements in the list are strings, each of size 𝑚?

• Comparing 2 such strings (in each iteration of Selection Sort) takes 𝑂 𝑚 in
the worst case.

• Overall, Selection Sort will run in 𝑂(𝑛2 ⋅ 𝑚) time.

Worst / Best Case Complexity

13

• In many cases, for the same size of input, the content of the input
itself affects the complexity. We then separate between worst case
and best case complexity.

• Examples:

• Note that this statement is completely nonsense:
"The best time complexity is when 𝑛 is very small…"

𝑇𝑤𝑜𝑟𝑠𝑡 𝑛 = max{𝑡𝑖𝑚𝑒 𝐼𝑛𝑝𝑢𝑡 : 𝐼𝑛𝑝𝑢𝑡 = 𝑛}

𝑇𝑏𝑒𝑠𝑡 𝑛 = min{𝑡𝑖𝑚𝑒 𝐼𝑛𝑝𝑢𝑡 : 𝐼𝑛𝑝𝑢𝑡 = 𝑛}

Worst caseBest case

O(logn)O(1)Binary search

O(n2)O(n2)Selection sort

Complexity Hierarchy

O(1)

O(logn)

O(n)

O(n2)

O(2n)

constant

logarithmic

linear

quadratic

ex
p

o
n

en
ti

al

O(log2n)

O(3n)

O(nlogn)

14

We’ll meet
this guy later
in the course

Unless asked to prove formally,
You can use this hierarchical
orderings as facts.

(b
o

u
n

d
 b

y)
 P

o
ly

n
o

m
ia

l

poly-logarithmic

...

...

...

...

...

...

...

...

O(1)

15

What is the meaning of this, in terms of time
complexity?

a) A very short running time

b) A running time that is independent of the input size (i.e.
constant)

c) 1 operation

d) Termination due to Run-time error

16

10 20 30 40 50 60

n
1.0E-09 2.0E-09 3.0E-09 4.0E-09 5.0E-09 6.0E-09

seconds seconds seconds seconds seconds seconds

n2 1.0E-08 4.0E-08 9.0E-08 1.6E-07 2.5E-07 3.6E-07

seconds seconds seconds seconds seconds seconds

n3 1.0E-07 8.0E-07 2.7E-06 6.4E-06 1.3E-05 2.2E-05

seconds seconds seconds seconds seconds seconds

n5 1.0E-05 0.00032 0.00243 0.01024 0.03125 0.07776

seconds seconds seconds seconds seconds seconds

2n 1.02E-07 1.05E-04 0.107 1.833 1.303 0.64

seconds seconds seconds minutes days years

3n 5.9E-06 0.35 5.72 38.55 22764 1.34E+09

seconds seconds hours years centuries centuries

• How would execution time for a fast, modern processor (1010 ops per
second, say) vary for a task with the following time complexities and 𝑛 =
input sizes?

Modified from Garey and Johnson's classical book

(In)Tractability

• Polynomial time = tractable. Exponential time = intractable.

What is Tractable in Practice?

• A polynomial-time algorithm is good.
• 𝑛100 is polynomial, hence good…

• An exponential-time algorithm is bad.

• 2𝑛/100 is exponential, hence bad…

• Yet for input of size 𝑛 = 4000, the 𝑛100 time algorithm
takes more than 1035 centuries on the above mentioned

machine, while the 2𝑛/100 algorithm runs in just under
two minutes.

17

Time Complexity - Advice

• Trust, but check! Don't just mumble "polynomial-time
algorithms are good", "exponential-time algorithms are bad"
because the lecturer told you so.

• Asymptotic run time and the O notation are important, and
in most cases help clarify and simplify the analysis.

• But when faced with a concrete task on a specific problem
size, you may be far away from "the asymptotic".

• In addition, constants hidden in the O notation may have
unexpected impact on actual running time.

18

19

Tight Bound - Theta Θ
• We say that a function 𝑓(𝑛) is Θ(𝑔(𝑛)) if there are two constant 𝑐1,𝑐2

such that for large enough 𝑛,

𝑐1 ∙ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 ∙ 𝑔(𝑛)

𝑐2 ∙ 𝑔(𝑛)

𝑓(𝑛)

𝑐1 ∙ 𝑔(𝑛)

• 𝑓(𝑛) = Θ(𝑔(𝑛)) IFF 𝑓(𝑛) = 𝑂(𝑔(𝑛)) and 𝑔(𝑛) = 𝑂(𝑓(𝑛))

• It is very common to use 𝑂 instead of Θ, but formally 𝑂 is merely an
upper bound

