Extended Introduction to Computer Science
CS1001.py

Chapter C
Lecture 8b Complexity and the O(-) Notation

Amir Rubinstein, Michal Kleinbort

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

" Slides based on a course designed by Prof. Benny Chor

http://tau-cs1001-py.wikidot.com/

Time Complexity: Basic Notions

e A computational problem is a relation between input and its
corresponding output (or mathematically, function parameters and
function value)

* An algorithm is a step-by-step procedure, a “recipe”
* can be represented in pseudo-code, diagrams, animations, etc.
 an abstract notion, can be implemented as a computer program

« Efficient algorithms are normally preferred
* fastest — time complexity
* most economical in terms of memory — space/memory complexity

* Time complexity analysis:
* measured in terms of operations, not actual time
* We want to say something about the algorithm, not a specific - -
machine/execution/programming language implementation
* but can be accompanied by actual time measurements

» expressed as a function of the problem input size
* often distinguish best/worst case inputs

Comments on Time complexity Analysis

* So far we analyzed time efficiency in terms of the number of
iterations, rather than counting operations.

* What underlying assumption justified this?

* An underlying assumption: the number of operations in each
iteration is bounded by some constant.

* Note that by “operations” we refer to basic ones, such as reading a variable from
memory, comparing two computer words, etc.

* Such operations may require different amount of time on different machines /
operating systems or even different executions on the same computer

e Pay attention! This assumption does not always hold (examples?)

Defining Time Complexity

We will be interested in how the number of operations changes
with input size.

In most cases, we will not care about the exact function, but in its
“order”, or growth rate (e.g., logarithmic, linear, quadratic, etc.)

Sometimes we will only be interested/able to give an upper
bound for this growth rate. We will, however, strive to make this
upper bound as tight (=low) as we can.

m In this course, we will almost always be able to give tight upper bounds.

So we need some formal definition for “upper bound for the
growth rate of the number of operations, as a function of input
size”.

“Big O” Notation

Let f (n) denote the number of operations an algorithm
performs on an input of size n.

We say that f(n) belongs to O(g(n)) if there exists a constant
¢ such that for large enough n,

fn) = c-gn)

This is denoted by f(n) € 0(g(n))
Also commonly denoted by f(n) = 0(g(n))
* — s abused and does not mean equality

Alternatively, f (n) may denote the number of memory cells
required by the algorithm on an input of size n

Big O Notation — Visualized

c-gn)

T f(n) =0(gm))

f(n)

Big O Notation - Examples

3n+7 = 0(n)

*3n+7 = 0n?) *

*3n+7# 0Wn)

*5n-log,n +1 = 0(nlogn) [where did the log base disappear?]
*6log,n = O(n) *

«2log,n+12=0(n) *

*«1000-n-log,n =0(n?) *

« 3" £ 0(2M)

o 2n/100 - O(nloo)

* not the tightest possible bound

The Asymptotic Nature of Big O

* Consider the two functions f(n) = 10nlog?n + 1, and
g(n) =n?-(2+sin(n)/3) + 2

* Itis not hard to verify that f(n) = 0(g(n)).

* Yet, for small values of n, f(n) > g(n), as can be seen in the following plot:

f(n)

The Asymptotic Nature of Big O (cont.)

But for large enough n, indeed f(n) < 1 - g(n), as can be seen in the next

plot: umww.

f(n)

gn)

* Also, remember that for big O, f (n) may be larger than g(n), as long as

there is a constant ¢ such that f(n) < c - g(n).
9

Summary of Some Previous Results

 All these results refer to worst case scenarios.

e Algorithms we saw on sequences:

* Palindrome checking on a string of length n takes O(n) iterations
* Binary search on a sorted list of length n takes O(logn) iterations
* Selection Sort on a list of length n takes O (n?) iterations

* Merging 2 sorted lists of sizes n and m takes O(n + m) iterations

e Algorithms we saw on integers:

* Addition of two n-bit integers takes O (n) iterations

 Multiplication of two n-bit integers takes O (n?) iterations

10

11

Input Size - Clarifications

We measure complexity as a function of the input size.

For integers, input size is the number of bits in the

representation of the number in the computer.
* we normally count the number of "simple" bit operations (such as
adding or multiplying two bits).

For lists/strings/dictionaries/other collections, the input size is

typically the number of elements in the collection.
 We normally consider "simple" operations on these elements (such as
comparisons, assignments) to take a constant amount of time.
* There are exceptions to this, however (see example on the next slide).

12

Input Size — Clarifications (cont.)

Recall that Selection Sort on a list of n elements runs in 0(n?) time.
But what if the elements in the list are strings, each of size m?

Comparing 2 such strings (in each iteration of Selection Sort) takes O(m) in
the worst case.

Overall, Selection Sort will run in O(n? - m) time.

13

Worst / Best Case Complexity

In many cases, for the same size of input, the content of the input
itself affects the complexity. We then separate between worst case
and best case complexity.

Tyorse (M) = max{time(Input): |Input| = n}

Tpeost(n) = min{time(Input): |Input| = n}

Sl | Bestaase | Wostcase

Binary search O(1) O(logn)

Selection sort 0O(n?) O(n?)

Note that this statement is completely nonsense:
"The best time complexity is when n is very small..."

exponential

(bound by) Polynomial

Complexity Hierarchy

guadratic

linear

poly-logarithmic

logarithmic

constant

:0(3”)
:0(2”)

0O(n?)

O(n)

O(log?n)

O:(Iogn)

o(1)

Unless asked to prove formally,
You can use this hierarchical
orderings as facts.

O(nlogn)

N\

We'll meet
this guy later
in the course

O(1)

What is the meaning of this, in terms of time
complexity?

a) A very short running time

b) A running time that is independent of the input size (i.e.
constant)

c) 1 operation

d) Termination due to Run-time error

(In)Tractability

 How would execution time for a fast, modern processor (10'° ops per
second, say) vary for a task with the following time complexities and n =

input sizes?
10 20 30 40 50 60

. 1.0E-09 2.0E-09 3.0E-09 4.0E-09 5.0E-09 6.0E-09
seconds | seconds seconds seconds seconds seconds

2 1.0E-08 4.0E-08 9.0E-08 1.6E-07 2.5E-07 3.6E-07
seconds | seconds seconds seconds seconds seconds

3 1.0E-07 8.0E-07 2.7E-06 6.4E-06 1.3E-05 2.2E-05
seconds | seconds seconds seconds seconds seconds

B 1.0E-05 0.00032 0.00243 0.01024 0.03125 0.07776
seconds | seconds seconds seconds seconds seconds

on 1.02E-07| 1.05E-04 0.107 1.833 1.303 0.64
seconds| seconds seconds minutes days years

3n 5.9E-06 0.35 5.72 38.55 22764 1.34E+09
seconds| seconds hours years centuries centuries

* Polynomial time = tractable. Exponential time = intractable.

16

Modified from Garey and Johnson's classical book

17

What is Tractable in Practice?

* A polynomial-time algorithm is good.
* n190 js polynomial, hence good...

* An exponential-time algorithm is bad.

« 21/100 j5 exponential, hence bad...

e Yet for input of size n = 4000, the n'% time algorithm
takes more than 103> centuries on the above mentioned
machine, while the 2"/19° algorithm runs in just under
two minutes.

Time Complexity - Advice

Trust, but check! Don't just mumble "polynomial-time
algorithms are good", "exponential-time algorithms are bad"
because the lecturer told you so.

Asymptotic run time and the O notation are important, and
in most cases help clarify and simplify the analysis.

But when faced with a concrete task on a specific problem
size, you may be far away from "the asymptotic".

In addition, constants hidden in the O notation may have
unexpected impact on actual running time.

Tight Bound - Theta ®

* We say that a function f (n) is ©(g(n)) if there are two constant c¢;,¢,
such that for large enough n,

¢rgm) = f(n) = cz-g(n)

¢ g(n)

* f(m)=0(gMm) IFF f(m)=0(g(n)) and g(n)=0(f(n))

* [tis very common to use O instead of O, but formally O is merely an
upper bound

19

