
Extended Introduction to Computer Science
CS1001.py

Complexity and the 𝑂(⋅) Notation

* Slides based on a course designed by Prof. Benny Chor

Chapter C
Lecture 8b

Amir Rubinstein, Michal Kleinbort

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

http://tau-cs1001-py.wikidot.com/

Time Complexity: Basic Notions
• A computational problem is a relation between input and its

corresponding output (or mathematically, function parameters and
function value)

• An algorithm is a step-by-step procedure, a “recipe”
• can be represented in pseudo-code, diagrams, animations, etc.
• an abstract notion, can be implemented as a computer program

• Efficient algorithms are normally preferred
• fastest – time complexity
• most economical in terms of memory – space/memory complexity

• Time complexity analysis:
• measured in terms of operations, not actual time

• We want to say something about the algorithm, not a specific
machine/execution/programming language implementation

• but can be accompanied by actual time measurements
• expressed as a function of the problem input size
• often distinguish best/worst case inputs

2

Comments on Time complexity Analysis

• So far we analyzed time efficiency in terms of the number of
iterations, rather than counting operations.

• What underlying assumption justified this?

• An underlying assumption: the number of operations in each
iteration is bounded by some constant.
• Note that by “operations” we refer to basic ones, such as reading a variable from

memory, comparing two computer words, etc.

• Such operations may require different amount of time on different machines /
operating systems or even different executions on the same computer

• Pay attention! This assumption does not always hold (examples?)

3

Defining Time Complexity

 We will be interested in how the number of operations changes
with input size.

 In most cases, we will not care about the exact function, but in its
“order”, or growth rate (e.g., logarithmic, linear, quadratic, etc.)

 Sometimes we will only be interested/able to give an upper
bound for this growth rate. We will, however, strive to make this
upper bound as tight (=low) as we can.
 In this course, we will almost always be able to give tight upper bounds.

 So we need some formal definition for ”upper bound for the
growth rate of the number of operations, as a function of input
size”.

4

“Big O” Notation
• Let 𝑓(𝑛) denote the number of operations an algorithm

performs on an input of size 𝑛.

• We say that 𝑓(𝑛) belongs to 𝑂(𝑔 𝑛) if there exists a constant
𝑐 such that for large enough 𝑛,

𝑓(𝑛) ≤ 𝑐 ∙ 𝑔(𝑛)

• This is denoted by 𝑓 𝑛 ∈ 𝑂(𝑔 𝑛)
• Also commonly denoted by 𝑓(𝑛) = 𝑂(𝑔(𝑛))

• = is abused and does not mean equality

• Alternatively, 𝑓(𝑛) may denote the number of memory cells
required by the algorithm on an input of size 𝑛

5

Big O Notation – Visualized

6

𝑓 𝑛 = 𝑂(𝑔 𝑛)

𝑓(𝑛)

𝑐 ∙ 𝑔(𝑛)

Big O Notation - Examples

• 3𝑛 + 7 = 𝑂 𝑛

• 3𝑛 + 7 = 𝑂(𝑛2) *

• 3𝑛 + 7 ≠ 𝑂(√𝑛)

• 5𝑛 ∙ log2𝑛 + 1 = 𝑂(𝑛 log 𝑛) [where did the log base disappear?]

• 6log2𝑛 = 𝑂(𝑛) *

• 2log2𝑛 + 12 = 𝑂(𝑛) *

• 1000 ∙ 𝑛 ∙ log2 𝑛 = 𝑂(𝑛2) *

• 3𝑛 ≠ 𝑂(2𝑛)

• 2𝑛/100 ≠ 𝑂(𝑛100)

7 * not the tightest possible bound

The Asymptotic Nature of Big 𝑂
• Consider the two functions 𝑓(𝑛) = 10𝑛log2 𝑛 + 1, and

𝑔 𝑛 = 𝑛2 ⋅ (2 + sin(𝑛)/3) + 2

• It is not hard to verify that 𝑓(𝑛) = 𝑂(𝑔 𝑛).

• Yet, for small values of 𝑛, 𝑓(𝑛) > 𝑔(𝑛), as can be seen in the following plot:

8

𝑓(𝑛)

𝑔(𝑛)

The Asymptotic Nature of Big 𝑂 (cont.)

• But for large enough 𝑛, indeed 𝑓 𝑛 ≤ 1 ⋅ 𝑔(𝑛), as can be seen in the next
plot:

9

• Also, remember that for big 𝑂, 𝑓(𝑛) may be larger than 𝑔(𝑛), as long as
there is a constant 𝑐 such that 𝑓 𝑛 ≤ 𝑐 ∙ 𝑔(𝑛).

𝑓(𝑛)

𝑔(𝑛)

10

Summary of Some Previous Results

• All these results refer to worst case scenarios.

• Algorithms we saw on sequences:
• Palindrome checking on a string of length 𝑛 takes 𝑂(𝑛) iterations

• Binary search on a sorted list of length 𝑛 takes 𝑂(𝑙𝑜𝑔𝑛) iterations

• Selection Sort on a list of length 𝑛 takes 𝑂(𝑛2) iterations

• Merging 2 sorted lists of sizes 𝑛 and 𝑚 takes 𝑂(𝑛 + 𝑚) iterations

• Algorithms we saw on integers:
• Addition of two 𝑛-bit integers takes 𝑂(𝑛) iterations

• Multiplication of two 𝑛-bit integers takes 𝑂(𝑛2) iterations

11

Input Size - Clarifications
• We measure complexity as a function of the input size.

• For integers, input size is the number of bits in the
representation of the number in the computer.
• we normally count the number of "simple" bit operations (such as

adding or multiplying two bits).

• For lists/strings/dictionaries/other collections, the input size is
typically the number of elements in the collection.
• We normally consider "simple" operations on these elements (such as

comparisons, assignments) to take a constant amount of time.
• There are exceptions to this, however (see example on the next slide).

12

Input Size – Clarifications (cont.)

• Recall that Selection Sort on a list of 𝑛 elements runs in 𝑂 𝑛2 time.

• But what if the elements in the list are strings, each of size 𝑚?

• Comparing 2 such strings (in each iteration of Selection Sort) takes 𝑂 𝑚 in
the worst case.

• Overall, Selection Sort will run in 𝑂(𝑛2 ⋅ 𝑚) time.

Worst / Best Case Complexity

13

• In many cases, for the same size of input, the content of the input
itself affects the complexity. We then separate between worst case
and best case complexity.

• Examples:

• Note that this statement is completely nonsense:
"The best time complexity is when 𝑛 is very small…"

𝑇𝑤𝑜𝑟𝑠𝑡 𝑛 = max{𝑡𝑖𝑚𝑒 𝐼𝑛𝑝𝑢𝑡 : 𝐼𝑛𝑝𝑢𝑡 = 𝑛}

𝑇𝑏𝑒𝑠𝑡 𝑛 = min{𝑡𝑖𝑚𝑒 𝐼𝑛𝑝𝑢𝑡 : 𝐼𝑛𝑝𝑢𝑡 = 𝑛}

Worst caseBest case

O(logn)O(1)Binary search

O(n2)O(n2)Selection sort

Complexity Hierarchy

O(1)

O(logn)

O(n)

O(n2)

O(2n)

constant

logarithmic

linear

quadratic

ex
p

o
n

en
ti

al

O(log2n)

O(3n)

O(nlogn)

14

We’ll meet
this guy later
in the course

Unless asked to prove formally,
You can use this hierarchical
orderings as facts.

(b
o

u
n

d
 b

y)
 P

o
ly

n
o

m
ia

l

poly-logarithmic

...

...

...

...

...

...

...

...

O(1)

15

What is the meaning of this, in terms of time
complexity?

a) A very short running time

b) A running time that is independent of the input size (i.e.
constant)

c) 1 operation

d) Termination due to Run-time error

16

10 20 30 40 50 60

n
1.0E-09 2.0E-09 3.0E-09 4.0E-09 5.0E-09 6.0E-09

seconds seconds seconds seconds seconds seconds

n2 1.0E-08 4.0E-08 9.0E-08 1.6E-07 2.5E-07 3.6E-07

seconds seconds seconds seconds seconds seconds

n3 1.0E-07 8.0E-07 2.7E-06 6.4E-06 1.3E-05 2.2E-05

seconds seconds seconds seconds seconds seconds

n5 1.0E-05 0.00032 0.00243 0.01024 0.03125 0.07776

seconds seconds seconds seconds seconds seconds

2n 1.02E-07 1.05E-04 0.107 1.833 1.303 0.64

seconds seconds seconds minutes days years

3n 5.9E-06 0.35 5.72 38.55 22764 1.34E+09

seconds seconds hours years centuries centuries

• How would execution time for a fast, modern processor (1010 ops per
second, say) vary for a task with the following time complexities and 𝑛 =
input sizes?

Modified from Garey and Johnson's classical book

(In)Tractability

• Polynomial time = tractable. Exponential time = intractable.

What is Tractable in Practice?

• A polynomial-time algorithm is good.
• 𝑛100 is polynomial, hence good…

• An exponential-time algorithm is bad.

• 2𝑛/100 is exponential, hence bad…

• Yet for input of size 𝑛 = 4000, the 𝑛100 time algorithm
takes more than 1035 centuries on the above mentioned

machine, while the 2𝑛/100 algorithm runs in just under
two minutes.

17

Time Complexity - Advice

• Trust, but check! Don't just mumble "polynomial-time
algorithms are good", "exponential-time algorithms are bad"
because the lecturer told you so.

• Asymptotic run time and the O notation are important, and
in most cases help clarify and simplify the analysis.

• But when faced with a concrete task on a specific problem
size, you may be far away from "the asymptotic".

• In addition, constants hidden in the O notation may have
unexpected impact on actual running time.

18

19

Tight Bound - Theta Θ
• We say that a function 𝑓(𝑛) is Θ(𝑔(𝑛)) if there are two constant 𝑐1,𝑐2

such that for large enough 𝑛,

𝑐1 ∙ 𝑔(𝑛) ≤ 𝑓(𝑛) ≤ 𝑐2 ∙ 𝑔(𝑛)

𝑐2 ∙ 𝑔(𝑛)

𝑓(𝑛)

𝑐1 ∙ 𝑔(𝑛)

• 𝑓(𝑛) = Θ(𝑔(𝑛)) IFF 𝑓(𝑛) = 𝑂(𝑔(𝑛)) and 𝑔(𝑛) = 𝑂(𝑓(𝑛))

• It is very common to use 𝑂 instead of Θ, but formally 𝑂 is merely an
upper bound

