Extended Introduction to Computer Science CS1001.py

Chapter C
 Lecture 8b Complexity and the $O(\cdot)$ Notation

Amir Rubinstein, Michal Kleinbort

School of Computer Science
Tel-Aviv University
Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

* Slides based on a course designed by Prof. Benny Chor

Time Complexity: Basic Notions

- A computational problem is a relation between input and its corresponding output (or mathematically, function parameters and function value)
- An algorithm is a step-by-step procedure, a "recipe"
- can be represented in pseudo-code, diagrams, animations, etc.
- an abstract notion, can be implemented as a computer program
- Efficient algorithms are normally preferred
- fastest - time complexity
- most economical in terms of memory - space/memory complexity
- Time complexity analysis:
- measured in terms of operations, not actual time
- We want to say something about the algorithm, not a specific machine/execution/programming language implementation
- but can be accompanied by actual time measurements
- expressed as a function of the problem input size
- often distinguish best/worst case inputs

Comments on Time complexity Analysis

- So far we analyzed time efficiency in terms of the number of iterations, rather than counting operations.
- What underlying assumption justified this?
- An underlying assumption: the number of operations in each iteration is bounded by some constant.
- Note that by "operations" we refer to basic ones, such as reading a variable from memory, comparing two computer words, etc.
- Such operations may require different amount of time on different machines / operating systems or even different executions on the same computer
- Pay attention! This assumption does not always hold (examples?)

Defining Time Complexity

- We will be interested in how the number of operations changes with input size.
- In most cases, we will not care about the exact function, but in its "order", or growth rate (e.g., logarithmic, linear, quadratic, etc.)
- Sometimes we will only be interested/able to give an upper bound for this growth rate. We will, however, strive to make this upper bound as tight (=low) as we can.
- In this course, we will almost always be able to give tight upper bounds.
- So we need some formal definition for "upper bound for the growth rate of the number of operations, as a function of input size".

"Big O" Notation

- Let $f(n)$ denote the number of operations an algorithm performs on an input of size n.
- We say that $f(n)$ belongs to $O(g(n))$ if there exists a constant c such that for large enough n,

$$
f(n) \leq c \cdot g(n)
$$

- This is denoted by $f(n) \in O(g(n))$
- Also commonly denoted by $f(n)=O(g(n))$
- = is abused and does not mean equality
- Alternatively, $f(n)$ may denote the number of memory cells required by the algorithm on an input of size n

Big O Notation - Visualized

Big O Notation - Examples

- $3 n+7=O(n)$
$\cdot 3 n+7=O\left(n^{2}\right)^{*}$
- $3 n+7 \neq O(\sqrt{ } n)$
- $5 n \cdot \log _{2} n+1=O(n \log n)$
[where did the log base disappear?]
- $6 \log _{2} n=O(n)^{*}$
- $2 \log _{2} n+12=O(n)$ *
- $1000 \cdot n \cdot \log _{2} n=O\left(n^{2}\right) *$
$-3^{n} \neq O\left(2^{n}\right)$
$\cdot 2^{n / 100} \neq O\left(n^{100}\right)$

The Asymptotic Nature of Big O

- Consider the two functions $f(n)=10 n \log ^{2} n+1$, and

$$
g(n)=n^{2} \cdot(2+\sin (n) / 3)+2
$$

- It is not hard to verify that $f(n)=O(g(n))$.
- Yet, for small values of $n, f(n)>g(n)$, as can be seen in the following plot:

The Asymptotic Nature of Big O (cont.)

- But for large enough n, indeed $f(n) \leq 1 \cdot g(n)$, as can be seen in the next plot:

- Also, remember that for big $O, f(n)$ may be larger than $g(n)$, as long as there is a constant c such that $f(n) \leq c \cdot g(n)$.

Summary of Some Previous Results

- All these results refer to worst case scenarios.
- Algorithms we saw on sequences:
- Palindrome checking on a string of length n takes $O(n)$ iterations
- Binary search on a sorted list of length n takes $O(\log n)$ iterations
- Selection Sort on a list of length n takes $O\left(n^{2}\right)$ iterations
- Merging 2 sorted lists of sizes n and m takes $O(n+m)$ iterations
- Algorithms we saw on integers:
- Addition of two n-bit integers takes $O(n)$ iterations
- Multiplication of two n-bit integers takes $O\left(n^{2}\right)$ iterations

Input Size - Clarifications

- We measure complexity as a function of the input size.
- For integers, input size is the number of bits in the representation of the number in the computer.
- we normally count the number of "simple" bit operations (such as adding or multiplying two bits).
- For lists/strings/dictionaries/other collections, the input size is typically the number of elements in the collection.
- We normally consider "simple" operations on these elements (such as comparisons, assignments) to take a constant amount of time.
- There are exceptions to this, however (see example on the next slide).

Input Size - Clarifications (cont.)

- Recall that Selection Sort on a list of n elements runs in $O\left(n^{2}\right)$ time.
- But what if the elements in the list are strings, each of size m ?
- Comparing 2 such strings (in each iteration of Selection Sort) takes $O(m)$ in the worst case.
- Overall, Selection Sort will run in $O\left(n^{2} \cdot m\right)$ time.

Worst / Best Case Complexity

- In many cases, for the same size of input, the content of the input itself affects the complexity. We then separate between worst case and best case complexity.

$$
\begin{aligned}
& T_{\text {worst }}(n)=\max \{\operatorname{time}(\text { Input }): \mid \text { Input } \mid=n\} \\
& T_{\text {best }}(n)=\min \{\text { time }(\text { Input }): \mid \text { Input } \mid=n\}
\end{aligned}
$$

- Examples:

	Best case	Worst case
Binary search	$\mathrm{O}(1)$	$\mathrm{O}(\operatorname{logn})$
Selection sort	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	$O\left(\mathrm{n}^{2}\right)$

- Note that this statement is completely nonsense:
"The best time complexity is when n is very small..."

Complexity Hierarchy

O(1)

What is the meaning of this, in terms of time complexity?
a) A very short running time
b) A running time that is independent of the input size (i.e. constant)
c) 1 operation
d) Termination due to Run-time error

(In)Tractability

- How would execution time for a fast, modern processor ($10^{10} \mathrm{ops}$ per second, say) vary for a task with the following time complexities and $n=$ input sizes?

	10	20	30	40	50	60
n	$1.0 \mathrm{E}-09$	$2.0 \mathrm{E}-09$	$3.0 \mathrm{E}-09$	$4.0 \mathrm{E}-09$	$5.0 \mathrm{E}-09$	$6.0 \mathrm{E}-09$
	seconds	seconds	seconds	seconds	seconds	seconds
n^{2}	$1.0 \mathrm{E}-08$	$4.0 \mathrm{E}-08$	$9.0 \mathrm{E}-08$	$1.6 \mathrm{E}-07$	$2.5 \mathrm{E}-07$	$3.6 \mathrm{E}-07$
	seconds	seconds	seconds	seconds	seconds	seconds
n^{3}	$1.0 \mathrm{E}-07$	$8.0 \mathrm{E}-07$	$2.7 \mathrm{E}-06$	$6.4 \mathrm{E}-06$	$1.3 \mathrm{E}-05$	$2.2 \mathrm{E}-05$
	seconds	seconds	seconds	seconds	seconds	seconds
n^{5}	$1.0 \mathrm{E}-05$	0.00032	0.00243	0.01024	0.03125	0.07776
	seconds	seconds	seconds	seconds	seconds	seconds
2^{n}	$1.02 \mathrm{E}-07$	$1.05 \mathrm{E}-04$	0.107	1.833	1.303	0.64
	seconds	seconds	seconds	minutes	days	years
3^{n}	$5.9 \mathrm{E}-06$	0.35	5.72	38.55	22764	$1.34 \mathrm{E}+09$
	seconds	seconds	hours	years	centuries	centuries

Modified from Garey and Johnson's classical book

- Polynomial time $=$ tractable. Exponential time $=$ intractable.

What is Tractable in Practice?

- A polynomial-time algorithm is good.
- n^{100} is polynomial, hence good...
- An exponential-time algorithm is bad.
- $2^{n / 100}$ is exponential, hence bad...
- Yet for input of size $n=4000$, the n^{100} time algorithm takes more than 10^{35} centuries on the above mentioned machine, while the $2^{n / 100}$ algorithm runs in just under two minutes.

Time Complexity - Advice

- Trust, but check! Don't just mumble "polynomial-time algorithms are good", "exponential-time algorithms are bad" because the lecturer told you so.
- Asymptotic run time and the O notation are important, and in most cases help clarify and simplify the analysis.
- But when faced with a concrete task on a specific problem size, you may be far away from "the asymptotic".
- In addition, constants hidden in the O notation may have unexpected impact on actual running time.

Tight Bound - Theta Θ

- We say that a function $f(n)$ is $\Theta(g(n))$ if there are two constant c_{1}, c_{2} such that for large enough n,

$$
c_{1} \cdot g(n) \leq f(n) \leq c_{2} \cdot g(n)
$$

- $f(n)=\Theta(g(n))$ IFF $f(n)=O(g(n))$ and $g(n)=O(f(n))$
- It is very common to use O instead of Θ, but formally O is merely an upper bound

