Extended Introduction to Computer Science CS1001.py

Chapter C Lecture 8b Complexity and the $O(\cdot)$ Notation

Amir Rubinstein, Michal Kleinbort

School of Computer Science Tel-Aviv University Fall Semester 2023-24 http://tau-cs1001-py.wikidot.com

^{*} Slides based on a course designed by Prof. Benny Chor

Time Complexity: Basic Notions

- A computational problem is a relation between input and its corresponding output (or mathematically, function parameters and function value)
- An algorithm is a step-by-step procedure, a "recipe"
 - can be represented in pseudo-code, diagrams, animations, etc.
 - an abstract notion, can be implemented as a computer program
- Efficient algorithms are normally preferred
 - fastest time complexity
 - most economical in terms of memory space/memory complexity
- Time complexity analysis:
 - measured in terms of operations, not actual time
 - We want to say something about the algorithm, not a specific machine/execution/programming language implementation

- but can be accompanied by actual time measurements
- expressed as a function of the problem input size
- often distinguish best/worst case inputs

Comments on Time complexity Analysis

- So far we analyzed time efficiency in terms of the number of iterations, rather than counting operations.
- What underlying assumption justified this?
- An underlying assumption: the number of operations in each iteration is bounded by some constant.
 - Note that by "operations" we refer to basic ones, such as reading a variable from memory, comparing two computer words, etc.
 - Such operations may require different amount of time on different machines / operating systems or even different executions on the same computer
- Pay attention! This assumption does not always hold (examples?)

Defining Time Complexity

- We will be interested in how the number of operations changes with input size.
- In most cases, we will not care about the exact function, but in its "order", or growth rate (e.g., logarithmic, linear, quadratic, etc.)
- Sometimes we will only be interested/able to give an upper bound for this growth rate. We will, however, strive to make this upper bound as tight (=low) as we can.
 - In this course, we will almost always be able to give tight upper bounds.
- So we need some formal definition for "upper bound for the growth rate of the number of operations, as a function of input size".

"Big O" Notation

- Let f(n) denote the number of operations an algorithm performs on an input of size n.
- We say that f(n) belongs to O(g(n)) if there exists a constant c such that for large enough n,

$$f(n) \leq c \cdot g(n)$$

- This is denoted by $f(n) \in O(g(n))$
- Also commonly denoted by f(n) = O(g(n))
 - = is abused and does not mean equality
- Alternatively, f(n) may denote the number of memory cells required by the algorithm on an input of size n

Big O Notation – Visualized

Big O Notation - Examples

$$\bullet 3n + 7 = O(n)$$

•
$$3n + 7 = O(n^2)$$
 *

•
$$3n + 7 \neq O(\sqrt{n})$$

$$\bullet 5n \cdot \log_2 n + 1 = O(n \log n)$$

[where did the log base disappear?]

•
$$6\log_2 n = O(n)$$
 *

•
$$2\log_2 n + 12 = O(n) *$$

•
$$1000 \cdot n \cdot \log_2 n = O(n^2)$$
 *

•
$$3^n \neq O(2^n)$$

•
$$2^{n/100} \neq O(n^{100})$$

The Asymptotic Nature of Big O

- Consider the two functions $f(n) = 10n\log^2 n + 1$, and $g(n) = n^2 \cdot (2 + \sin(n)/3) + 2$
- It is not hard to verify that f(n) = O(g(n)).
- Yet, for small values of n, f(n) > g(n), as can be seen in the following plot:

The Asymptotic Nature of Big O (cont.)

• But for large enough n, indeed $f(n) \le 1 \cdot g(n)$, as can be seen in the next plot:

• Also, remember that for big 0, f(n) may be larger than g(n), as long as there is a constant c such that $f(n) \le c \cdot g(n)$.

Summary of Some Previous Results

- All these results refer to worst case scenarios.
- Algorithms we saw on sequences:
 - Palindrome checking on a string of length n takes O(n) iterations
 - Binary search on a sorted list of length n takes O(logn) iterations
 - Selection Sort on a list of length n takes $O(n^2)$ iterations
 - Merging 2 sorted lists of sizes n and m takes O(n + m) iterations
- Algorithms we saw on integers:
 - Addition of two n-bit integers takes O(n) iterations
 - Multiplication of two n-bit integers takes $O(n^2)$ iterations

Input Size - Clarifications

- We measure complexity as a function of the input size.
- For integers, input size is the number of bits in the representation of the number in the computer.
 - we normally count the number of "simple" bit operations (such as adding or multiplying two bits).

- For lists/strings/dictionaries/other collections, the input size is typically the number of elements in the collection.
 - We normally consider "simple" operations on these elements (such as comparisons, assignments) to take a constant amount of time.
 - There are exceptions to this, however (see example on the next slide).

Input Size – Clarifications (cont.)

- Recall that Selection Sort on a list of n elements runs in $O(n^2)$ time.
- But what if the elements in the list are strings, each of size m?
- Comparing 2 such strings (in each iteration of Selection Sort) takes O(m) in the worst case.
- Overall, Selection Sort will run in $O(n^2 \cdot m)$ time.

Worst / Best Case Complexity

• In many cases, for the same size of input, the content of the input itself affects the complexity. We then separate between worst case and best case complexity.

$$T_{worst}(n) = \max\{time(Input): |Input| = n\}$$

 $T_{best}(n) = \min\{time(Input): |Input| = n\}$

Examples:

	Best case	Worst case
Binary search	O(1)	O(logn)
Selection sort	O(n²)	O(n²)

Note that this statement is completely nonsense:

"The best time complexity is when n is very small..."

Complexity Hierarchy

O(1)

What is the meaning of this, in terms of time complexity?

- a) A very short running time
- A running time that is independent of the input size (i.e. constant)
- c) 1 operation
- d) Termination due to Run-time error

(In)Tractability

• How would execution time for a fast, modern processor (10^{10} ops per second, say) vary for a task with the following time complexities and n = input sizes?

	10	20	30	40	50	60
n	1.0E-09	2.0E-09	3.0E-09	4.0E-09	5.0E-09	6.0E-09
	seconds	seconds	seconds	seconds	seconds	seconds
n ²	1.0E-08	4.0E-08	9.0E-08	1.6E-07	2.5E-07	3.6E-07
	seconds	seconds	seconds	seconds	seconds	seconds
n ³	1.0E-07	8.0E-07	2.7E-06	6.4E-06	1.3E-05	2.2E-05
	seconds	seconds	seconds	seconds	seconds	seconds
n ⁵	1.0E-05	0.00032	0.00243	0.01024	0.03125	0.07776
	seconds	seconds	seconds	seconds	seconds	seconds
2 ⁿ	1.02E-07	1.05E-04	0.107	1.833	1.303	0.64
	seconds	seconds	seconds	minutes	days	years
3 ⁿ	5.9E-06	0.35	5.72	38.55	22764	1.34E+09
	seconds	seconds	hours	years	centuries	centuries

Modified from Garey and Johnson's classical book

Polynomial time = tractable. Exponential time = intractable.

What is Tractable in Practice?

- A polynomial-time algorithm is good.
 - n^{100} is polynomial, hence good...
- An exponential-time algorithm is bad.
 - $2^{n/100}$ is exponential, hence bad...

• Yet for input of size n=4000, the n^{100} time algorithm takes more than 10^{35} centuries on the above mentioned machine, while the $2^{n/100}$ algorithm runs in just under two minutes.

Time Complexity - Advice

- Trust, but check! Don't just mumble "polynomial-time algorithms are good", "exponential-time algorithms are bad" because the lecturer told you so.
- Asymptotic run time and the O notation are important, and in most cases help clarify and simplify the analysis.
- But when faced with a concrete task on a specific problem size, you may be far away from "the asymptotic".
- In addition, constants hidden in the O notation may have unexpected impact on actual running time.

Tight Bound - Theta 😉

• We say that a function f(n) is $\Theta(g(n))$ if there are two constant c_1, c_2 such that for large enough n,

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

- $f(n) = \Theta(g(n))$ IFF f(n) = O(g(n)) and g(n) = O(f(n))
- It is very common to use O instead of Θ , but formally O is merely an upper bound