
Extended Introduction to Computer Science
CS1001.py

Floating Point Representation

* Slides based on a course designed by Prof. Benny Chor

Chapter B
Lecture 7a

Amir Rubinstein, Michal Kleinbort

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

http://tau-cs1001-py.wikidot.com/

Wonders of “Real Numbers” in Python

• Look at this, a very disturbing phenomenon:

>>> 0.1+0.1 == 0.2

True

>>> 0.1+0.1+0.1 == 0.3

False

• And indeed,

>>> 0.1+0.1

0.2

>>> 0.1+0.1+0.1

0.30000000000000004

• We need some understanding of how decimal point numbers are
represented in the computer’s memory.

2

Fixed Point

• A simple way to represent decimal point numbers in the computer’s
memory would be a fixed point representation.

• Suppose we allocate 𝑛 decimal digits for such numbers

• We designate a fixed number of digits to the right of the decimal point.
Denote this number 𝑘 (0 < 𝑘 < 𝑛 − 1):

𝑑0𝑑1𝑑2…𝑑𝑘−1. 𝑑𝑘𝑑𝑘+1…𝑑𝑛−1

• For example, if 𝑛 = 7 and 𝑘 = 2, then 1498523 represents 14985.23

• The (fixed) value of 𝑘 can be regarded as an implicit “scaling factor.“

(in the example above the scaling factor is 1/100).
3

𝑛 − 𝑘 𝑘

Fixed Point

• However, there are some major disadvantages to this method,
which is why it is hardly used today in modern systems.

• First, this method bounds numbers to a fixed order of magnitude
and precision.
• For example, distances between galaxies and diameters of atomic nucleus

cannot be both expressed with the same fixed scaling factor.

• Also, frequent rounding due to arithmetical operations may cause
loss of precision.
• For example, if the scaling factor is 1/100, multiplying two numbers is likely

to yield a number with 4 digits of precision, which then must be rounded to
conform with the fixed precision (look at 0.01 ⋅ 0.01 = 0.0001)

4

Floating Point

• Today, most decimal point numbers are represented using
floating point representation. This method allows different
orders of magnitude and precision within the same type.

• Over the years, a variety of floating point representations
have been used in computers. However, since the 1990s, the
most commonly encountered representation is that defined
by the IEEE 754 Standard, some of which will be presented
next.

• The basic idea:

14985.23 can be represented as 1.498523×104

0.001498523 can be represented as 1.498523×10−3

5

IEEE 754 Standard for Floating Point Numbers

• Suppose we deal with a machine of 64 bit words. A floating point number
is represented by 64 bits:

and is coded by:

−1 𝑠𝑖𝑔𝑛 ∙ 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡−1023 ∙ (1 + 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

• The 𝑠𝑖𝑔𝑛 bit: 0 indicates non-negative, 1 indicates negative

• The 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 is an 11 bit integer, so −1023 ≤ 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 − 1023 ≤ 1024

• The 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 is a sum of negative powers of 2, represented by 52 bits:

0 ≤ 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ≤ σ𝑖=1
52 1

2𝑖
= 1 − 2−52

6

(figure from Wikipedia)

Example #1

7

Which number is represented here?

0 01111111110 1000

• The sign bit is 0 +

• exponent = 011111111102 = 102210

• The fraction bits are 100...0 

fraction = Σi=1
52 𝑏𝑖 ⋅

1

2𝑖
= 1 ⋅

1

2
+ 0 ⋅

1

4
+ …+ 0 ⋅

1

252
=

1

2

−1 𝑠𝑖𝑔𝑛 ∙ 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡−1023 ∙ 1 + 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

+ ⋅ 21022 −1023 ⋅ 1 +
1

2
= 2−1 ⋅ 1.5 = 0.75

• Look at: https://float.exposed/0x3fe8000000000000

https://float.exposed/0x3fe8000000000000

Example #2

8

Which number is represented here?

1 10000000001 011000

• The sign bit is 1 -

• exponent = 100000000012 = 102510

• The fraction bits are 01100...0 

fraction = Σi=1
52 𝑏𝑖 ⋅

1

2𝑖
= 0 ⋅

1

2
+ 1 ⋅

1

4
+ 1 ⋅

1

8
+ 0 ⋅

1

16
+⋯+ 0 ⋅

1

252

=
1

4
+
1

8
= 0.375

−1 𝑠𝑖𝑔𝑛 ∙ 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡−1023 ∙ 1 + 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

− ⋅ 21025 −1023 ⋅ 1 + 0.375 = −22 ⋅ 1.375 = −5.5

• Look at: https://float.exposed/0xc016000000000000

https://float.exposed/0xc016000000000000

Floating Point has Bounded Accuracy

• Accuracy is of course bounded (determined by the “word
size'', the operating system you are using ,the version of the
interpreter, etc., etc.(.

• Indeed, floating point arithmetic carries many surprises for
the unwary. This follows from the fact that floating numbers
are represented as a number in binary, namely the sum of a
fixed number of powers of two.

• The bad news is that even very simple rational numbers
cannot be represented this way with complete accuracy.

• For example, the decimal 0.1 =
1

10
cannot be represented as a sum

of powers of two, since the denominator has prime factors other
than 2, in this case, 5.

9

The 0.1 Example
• A confusing issue is that when we type 0.1 (or, equivalently, 1/10) to the

interpreter, the reply is 0.1.

>>> 1/10

0.1

• This does not mean that 0.1 is represented exactly as a floating point number.
It just means that Python's designers have built the display function to act
this way.

• In fact the inner representation of 0.1 on most machines today is (see here):

+2-4 * 1.600000000000000088817841970012523233890533447265625

• And so is the inner representation of 0.10000000000000001.
Since the two have the same inner representation, no wonder that display
treats them the same:

>>> 0.10000000000000001

0.1
10

https://float.exposed/0x3fb999999999999a

Arithmetic of Floating Point Numbers
(for reference only)

• The speed of floating point operations, commonly measured in terms of
FLOPS, is an important characteristic of a computer system, especially for
applications that involve intensive numerical calculations.

• Addition is done by first shifting both numbers to have the same exponent,
then adding the fractions, then converting back so that the fraction is smaller
than 1 (recall 0 ≤ fraction ≤ 1-2-52).

• Multiplication is done by multiplying the two fractions, and adding the two
exponents.

• Subtraction and division are analogous to addition and multiplication,
correspondingly.

• Arithmetical operations may lead to substantial loss of precision

11

Arithmetic of Floating Point Numbers

• Arithmetical operations may lead to substantial loss of precision:

>>> a = 10.0**40

>>> a

1e+40

>>> b = 10.0**4

>>> a-b

1e+40

>>> a-b == a

True 

>>> a%b

752.0 

12

Exercise
• How many different floating point values are in [1,2)?

– Sign bit must be 0 (+)

– Recall 0 ≤ 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 < 1, and so 1 ≤ 1 + 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 < 2
• 252 different fractions possible

– 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 must be 1023

• We get 252 numbers in [1,2)

• What about [2,4)? [4,8)? [2𝑛, 2𝑛+1)?

13

−1 𝑠𝑖𝑔𝑛 ∙ 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡−1023 ∙ (1 + 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

Uneven Spread of Floating Point
• Indeed, for every range of numbers between adjacent powers of 2, there are an

equal number of representable numbers, so floating point numbers become
more sparse as they increase in magnitude.

14

Image from Wikipedia

Life is (a bit) More Complicated
(for reference only)

• There are several special cases, which deviate from the formula we saw.
These are used for special values such as 0.0, and occur when either the
exponent is all 0s’ or all 1’s, or when the fraction is all 0’s.

15

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

all 0’s Otherwise
(not all 0’s)

all 0’s 0.0 “Subnormal
numbers”

all 1’s ∞ NaN

• Randomly choose points (𝑥, 𝑦) in
the unit square (0 ≤ 𝑥, 𝑦 < 1)

• Count how many are located inside
the quarter circle of radius 1
centered in the origin

• The ratio is an approximation for
𝜋

4

Figure taken from
http://mathfaculty.fullerton.edu/mathews/
n2003/montecarlopimod.html

16

Example: Estimating π

=

1
4
𝜋𝑟2

𝑟2
=
𝜋

4

http://mathfaculty.fullerton.edu/mathews/n2003/montecarlopimod.html

Estimating π in Python

import random

def estimate_Pi(sample_size=1000):

""" estimate pi, using sample_size random choices """

count=0

for n in range(sample_size):

x = random.random()

y = random.random()

if x**2 + y**2 <= 1.0: # inside circle

count += 1

return 4*count/sample_size # 4*(pi/4) = pi

>>> estimate_Pi()

3.156

>>> estimate_Pi(100000)

3.12864

>>> estimate_Pi(10**8)

3.14175412

>>> import math

>>> math.pi

3.141592653589793

17

default: 1000 samples

took ~1 min

19

Comic Relief *

אני מזמין אתכם לשלוח לי הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטר*

https://www.youtube.com/shorts/TXl4q-ZEjvA

https://www.youtube.com/shorts/TXl4q-ZEjvA

