
Extended Introduction to Computer Science
CS1001.py

Integer Representation
(in binary and other bases)

* Slides based on a course designed by Prof. Benny Chor

Chapter B
Lecture 6a

Amir Rubinstein, Michal Kleinbort

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

http://tau-cs1001-py.wikidot.com/

עדכונים קצרים

במודלpyניתן להגיש קבצי , כפי שהודענו במייל•

שבועות3-ל, פורסם2תרגיל בית •

.לא לומדים חומר חדש. השלמת פעריםשבוע : שבוע הבא•
מה –אני אפרסם בקרוב תקציר של החומר שנלמד עד כה עם דגשים ללמידה –

למי שזקוקים להכוונה ומיקוד יעזור . קריטי להמשך ומה אפשר לדחות קצת

להשלמת פערים

יהיה אפשר הפעם . לשעת קבלה(כרגיל)זום + אגיע פיזית לכיתה : יום ראשון–

.להשתתף בזום

לא להסס לפנות אליי –זקוקים לשיחה פרטית להכוונה נוספת אם –

2

Plan for This Lecture

1. From hardwareto bits

2. From bits to the Naturals
• Naturals in binary (base 2)

• Large ints in Python

• Binary arithmetic (+, ∗)

3. Naturals in other bases

4. Negative integers

“God created the natural numbers;

all the rest is the work of man”

(Leopold Kronecker, 1823 –1891)

4/24

Deep Inside the Computer Circuitry
• Most of the logic and memory hardware inside the computer are

electronic devices containing a huge number of transistors

• The transistor was invented in 1947, Bell Labs, NJ, and
won the inventors a Nobel Prize in 1956

• 3-10 nm (1 nanometer = 10−9 meter)

• At any given point in time, the voltage in each of these tiny devices can
be in twodistinct states, for example either +5v or 0v. So transistors can
operate as binary switches, and are combined to form highly complex and
functional circuitry.

• This means that data in the computer are represented in binary.

• An extremely useful abstraction is to ignore the underlying electric
details, and view the voltage levels as bits (binary digits):

• 0v is viewed as 0, +5v is viewed as 1
5/24

1 bit = 0/1

1 byte = 8 bit

1 KB (Kilobyte) = 210 bytes = 1024 bytes

1 MB (Megabyte) = 220 bytes = 1024 KB

1 GB (Gigabyte) = 230 bytes = 1024 MB

1 TB (Terabyte) = 240 bytes = 1024 GB

…

Bits, Bytes and Beyond

From Bits to Numbers and Beyond -
Hierarchy of Abstraction Levels

• The next conceptual step is arranging these bits so they can represent
natural numbers.

• Then, we will strive to arrange natural numbers so they can represent
other types of numbers - negative integers, real numbers, complex
numbers,and furthermore characters, text, pictures, audio, video, etc.

• We will begin at the beginning: From bits to integers.
7/24

Natural Numbers in Binary

Decimal

Binary

Natural Numbers in Binary

• Explanation using cards *

* Inspired by Computer Science Unplugged / Hebrew version
9/24

http://www.csunplugged.org.il/lessons/binary-numbers
http://www.csunplugged.org.il/lessons/binary-numbers

10

00000

11

10100

5(10) = 101(2)

12

10110

13(10) = 1101(2)

13

00110

12(10) = 1100(2)

14

11110

15(10) = 1111(2)

15

11110

Adding 1 (to 15)

16

11110

Adding 1 (to 15)

1

17

11110

Adding 1 (to 15)

10

1

18

110

Adding 1 (to 15)

1

10

1
1

19

110

Adding 1 (to 15)

carry
0

1
1

20

110

Adding 1 (to 15)

carry
0

1
1

10

21

01110

Adding 1 (to 15)

1 carry

10

22

00110

Adding 1 (to 15)

1 carry

23

00110

Adding 1 (to 15)

1 carry

10

24

00110

Adding 1 (to 15)

1 carry

10

25

00010

Adding 1 (to 15)

1 carry

26

00010

Adding 1 (to 15)

1 carry

10

27

00010

Adding 1 (to 15)

1 carry

10

28

00000

Adding 1 (to 15)

1 carry

29

00001

Adding 1 (to 15)

carry

16(10) = 10000(2)

30

Naturals in Binary – an Important Property

• Q: How many distinct values can be represented using 𝑛 bits?

• A: 2𝑛

31/24

ניתן להבחין בין שני מצבים–מתג אחד

32

ניתן להבחין בין ארבעה מצבים–שני מתגים

A BA BA BA B

33

שני מתגים

A B

34

?כמה מצבים שונים יוצרים שלושה מתגים

35

?כמה מצבים שונים יוצרים שלושה מתגים

A B
אלו המצבים שיוצרים שני מתגים

36

?כמה מצבים שונים יוצרים שלושה מתגים

A BC
נוסיף מתג שלישי

37

?כמה מצבים שונים יוצרים שלושה מתגים

A BC

38

?כמה מצבים שונים יוצרים שלושה מתגים

A BC A BC

39

?מתגים𝑛כמה מצבים שונים יצרו

(1/ 0דולק או /כבוי)לכל מתג יש שתי אפשרויות •

2𝑛מספר האפשרויות הכולל הוא •

40

Naturals in Binary – an Important Property

• Q: How many distinct values can be represented using 𝑛 bits?

• A: 2𝑛

• For example, 64-bit sequence can represent 264 different values.

• Used to represent the Naturals, the range is 0,1,… ,264−1.

• 000…0
64𝑏𝑖𝑡𝑠

represents 0

…

• 111…1
64𝑏𝑖𝑡𝑠

represents20 +21 +⋯+263 = 264−1

41/24

Limits to Natural Number Representation

• Modern computers are arranged by words, groups of fixed number of bits
that correspondto size of registers, units of memory,etc.

• Word size is uniform across a computer, and depends both on the
hardware (processors, memory, etc.) and on the operating system.

• Typical word sizes are 8, 16 (Intel original 8086), 32, or 64 bits (most
probably used by your PC or iMAC).

• In many programming languages, integers are represented by either a
single computer word, or by two computer words(e.g. types intand
long in Java).

• This means that the range of representable integers is limited.

• Things are quite different in Python, as we shall now see.

42/24

Handling Large Integers in Python

• To “bypass” the word-size limit, several words should be manipulated
together correspondingly (to represent higher powers of 2).

• This is either done explicitly by the user/programmer, or provided directly
by the programming language.

• Python takes care of large integers internally, evenif they areway over
the word size.

>>> 2**199 #200 bits

803469022129495137770981046170581301261101496891396417650688

>>> 2**299 #300 bits

101851798816724304313422284420468908052573419683296812531807022467

7190649881668353091698688

>>> 3**97 - 2**121 + 17

19088056320749371083854654541807988572109959828

43/24

Complexity Issues

• Still, when manipulating large integers, one should think of the
computational resources involved:

► Time: How many basic operations (or, clock cycles) are needed for the
various arithmetic operations? Time will grow as 𝑛, the number of bits in
the numbers we operate on, grows.How time growsas a function of 𝑛 is
important since this will make the difference between fast and slow tasks,
and even between feasible and infeasible tasks.

► Space: There is no difficulty to represent 2210
, or, in Python

2**(2**10) (as the result takes four lines on my Python Shell
window, I skip it).

► But don’t try 22100
(why?)!

• As already mentioned, We will define these notions precisely soon, but
you should start paying attention to such considerations.

44/24

Bit Addition and Multiplication

• Addition and multiplication of single bits are not different from
the decimal operations we are used to:

b1 b2 b1+b1 b1*b2

1 1 10 1

1 0 1 0

0 1 1 0

0 0 0 0

45/24

Binary Addition

► Suppose we have two 𝑛-bit natural numbers in binary, 𝐴 and𝐵.

► Computing 𝐴 + 𝐵 is done ”bitwise”, with possibly a carry bit
in each position.

► This logic can be implemented by hardware circuitry

► Property 1: The maximal length of the output is bits

► Property 2: At most bit-additions needed

(1)(1)

1 1 0 0 (A = 1210)

+ 1 1 0 1 (B = 1310)

= 1 1 0 0 1 (A+B = 2510)

𝑛+ 1

2𝑛− 1

46/24

► Property 1: The maximal length of the output is bits

► Property 2: exactly 𝑛2 bit-multiplications, < 4𝑛2 bit-additions

Try proving both at home!

Binary Multiplication
► Suppose we have two 𝑛-bit natural numbers in binary, 𝐴 and𝐵.

► Computing𝐴 ∗ 𝐵 can also be done ”bitwise”, just like
decimal multiplication from elementary high-school

► This logic can be implemented by hardware circuitry

1 1 0 0 (A = 1210)

× 1 1 0 1 (B = 1310)

1 1 0 0 ← Corresponds to the rightmost 'one' in B

+ 0 0 0 0 ← Corresponds to the next 'zero' in B

+(1) 1 1 0 0

+ 1 1 0 0

= 1 0 0 1 1 1 0 0 (A⋅B = 15610)

2𝑛

47/24

Binary Subtraction and Division

• Subtraction and division are also performed in a similar way
to decimal, but we will not show it.

• You may be asked about this in your HW

48/24

Unary Representation of Naturals

• Consider the natural number nineteen(19 in decimal)

• In binary, it is represented as 10011

• In unary (base 1) it is represented as 0000000000000000000

• The two representations refer to the same entity, nineteen. However, the
lengths of the representations are substantially different:

The unary representation is exponentially longer than the binary.

• To seethis, consider the natural number 2𝑛.

• Inunary it is represented by 2𝑛 digits

• In binary it is represented by a single ‘1’, followed by 𝑛 ‘0’s.

49/24

Representation of Naturals in Base 10
• A natural number 𝑁 can be represented in base10,

as a polynomial, whose coefficients are natural numbers smaller than 10.

𝑁 = 𝑎𝑘 · 10
𝑘 + 𝑎𝑘−1 · 10

𝑘−1+ … + 𝑎1 · 101 + 𝑎0

(for each 𝑖 , 0 ≤ 𝑎𝑖 < 10)

• The coefficients of the polynomial are the digits of 𝑁 in its base 10
representation:

𝑁(10) = 𝑎𝑘𝑎𝑘−1 … 𝑎1𝑎0

• Claim: The natural number𝑁 represented as a polynomial of degree 𝑘
(has 𝑘 + 1 digits, 𝑎𝑘 ≠ 0) in base 10satisfies10𝑘 ≤ 𝑁 < 10𝑘+1.

• Do you see why?

50/24

Representation of Naturals in Base 2
• A natural number 𝑁 can be represented in base2,

as a polynomial, whose coefficients are natural numbers smaller than 2.

𝑁 = 𝑎𝑘 · 2
𝑘 + 𝑎𝑘−1 · 2

𝑘−1+ … + 𝑎1 · 21 + 𝑎0

(for each 𝑖 , 0 ≤ 𝑎𝑖 < 2)

• The coefficients of the polynomial are the digits of 𝑁 in its base 2
representation:

𝑁(2) = 𝑎𝑘𝑎𝑘−1 … 𝑎1𝑎0

• Claim: The natural number𝑁 represented as a polynomial of degree 𝑘
(has 𝑘 + 1 digits, 𝑎𝑘 ≠ 0) in base 2satisfies2𝑘 ≤ 𝑁 < 2𝑘+1 .

• Do you see why?

51/24

Representation of Naturals in Base 𝑏 > 1
• A natural number 𝑁 can be represented in base𝑏 (𝑏 > 1, an integer),

as a polynomial, whose coefficients are natural numbers smaller than 𝑏.

𝑁 = 𝑎𝑘 · 𝑏
𝑘 + 𝑎𝑘−1 · 𝑏

𝑘−1+ … + 𝑎1 · 𝑏1 + 𝑎0

(for each 𝑖 , 0 ≤ 𝑎𝑖 < 𝑏)

• The coefficients of the polynomial are the digits of 𝑁 in its base 𝑏
representation:

𝑁(𝑏) = 𝑎𝑘𝑎𝑘−1 … 𝑎1𝑎0

• Claim: The natural number𝑁 represented as a polynomial of degree 𝑘
(has 𝑘 + 1 digits, 𝑎𝑘 ≠ 0) in base 𝑏 satisfies 𝑏𝑘 ≤ 𝑁 < 𝑏𝑘+1.

• Do you see why?

52/24

Concllusion (proof in the recitations): The number of digits, 𝑑,
required for representing the natural number𝑁 in base 𝑏 is

𝑑 = 𝑙𝑜𝑔𝑏𝑁 + 1

• For example, 1024 = 210 requires 11 bits (10000000000)

2210
requires 210+1 = 1025 bits.

Representation of Naturals in Base > 1

53/24

Other Bases > 1

• Beside the commonly used decimal (base 10) and binary (base 2)
representations, other representations arealso in use. In particular the
ternary (base 3), octal (base 8) and hexadecimal (hex, 0x, base 16) are
well known.

• The lengths of representations in different bases differ. However, the
lengths in any two bases 𝑏 > 1 and 𝑐 > 1 are related linearly.

• A number represented with 𝑑 digits in base 𝑏 > 1 will take at most
𝑑 ⋅ log𝑐𝑏 digits in base 𝑐 > 1.
• For example, a number represented with 𝑑 digits in base 10 will

take at most 𝑑 ⋅ log210 digits in base 2 (=bits).
• 9 1001
• 99 1100011

• You may prove this in the Tirgul/HW

54/24

Different Base Representations in Python

• Python has built in functions for converting a number from decimal (base
10) to binary, octal (base 8), and hexadecimal (base 16).

>>> bin(1000)

'0b1111101000'

>>> oct(1000)

'0o1750'

>>> hex(1000)

'0x3e8' #hexadedimal digits: 0,1,2,...,9,a,b,c,d,e,f

>>> type(bin(1000))

<class 'str'>

• The returned values arestrings, whoseprefixes 0b,0o,0x indicate the
bases 2, 8, 16, respectively.

55/24

Hexadecimal Representations in Python

• In hex, the letters a , b , . . . , f indicate the “digits” 10, 11, . . . , 15,
respectively.

>>> hex(10)

'0xa'

>>> hex(15)

'0xf'

>>> hex(62)

'0x3e' 62 = 3*16 + 14

• Recitation (”tirgul”): Conversion to “target bases”≠ 2, 8, 16.

56/24

Converting to Decimal in Python
• Python hasa built-in function, int, for converting a number from base𝑏

representation to decimal representation. The input is a string, which is a
representation of a number in base 𝑏 (for the power of two bases, 0b,
0o,0x prefixes are optional), and the base, 𝑏 , itself .

>>> int("0110",2)

6

>>> int("0b0110",2)

6

>>> i n t (" f" , 1 6)

15

>>> i n t (" f f f " , 1 6)

4095

>>> i n t (" f f f " , 1 7)

4605

>>> int("ben",24)

6695

>>> int("ben",23)

Traceback (most recent c a l l l a s t) :

F i l e "<pyshell#16>", l i n e 1, i n

<module> int("ben",23)

ValueError: invalid l i t e r a l for i n t () with base 23:’ben’

"a" for 10, "b" for 11, ... ,"m" for 22
No "n" in base 23

57/24

Comic Relief *

אני מזמין אתכם לשלוח לי הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטר*
58

Negative Integers

► An interesting issue is how negative integers can be represented.

► Suppose we use𝑛 bits. We would like to divide the range of 2𝑛

values represented by those bits such that about half would be used
for positive and about half for negative integers.

► For example, 32 bits can be used to represent any integer, 𝑘, in the
range−231 ≤ 𝑘 ≤ 231 −1.

► We would also like arithmetic operations to be efficient.

59/24

Negative Integers - the Sign Bit Option

► We could simply assign one bit (say, the leftmost) to
denote the sign: 0 for + , 1 for −

► Example with 8 bit numbers: +1=00000001, -1=10000001

► Disadvantages?

► 0 has 2 representations (+0 and -0)
► arithmetical operations (e.g. addition) involving negative numbers

require slightly different algorithms (and computer circuitry).
For example, suppose wedeal with 8 bit numbers, and add +1
(00000001) and -1 (10000001) in this representation. Just adding the
bits wll yield 10000010, which is -2…

► So the sign bit method is not in use.
► The method most often used is Two’s Complement

60/24

Two’s Complement (for reference only)
• For the sake of completeness, we’ll briefly explain how negative integers

are represented in the two’s complement representation.

• Suppose we have a 𝑘 bit, non negative integer, 𝑀 .
• To represent−𝑀, we compute 2𝑘 −𝑀 , and drop the leading

(leftmost) bit.
• For the sake of simplicity, suppose we deal with an 8 bit number:

100000000 2 8 100000000 2 8

- 00000001 M = 1 - 00001110 M = 14

11111111 −1 11110010 −14

• It turns out that if non negative integers have 0 astheir leading (leftmost) bit,
then negative integers will have 1 astheir leading (leftmost) bit.

• So the leading bit practically behaves as a sign bit, with about half the
numbers positive and half negative.

• Main advantage of 2’s Complement over sign bit method: operations require no
distinction between positive and negative numbers.

61/24

Highly Recommended Sources

• ”Computer Science Field Guide” chapter at
https://www.csfieldguide.org.nz/en/chapters/data-representation/numbers/

• A nice explanation on counting bases from a wonderful blog by Dr. Gadi
Aleksandrowicz called “ מדוייקלא “:

https://gadial.net/2017/06/11/number_bases/

• A very thorough explanation on binary numbers (with some nice demos):
http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/index.html

• Two's complement method for representing negative integers, for those
interested: https://youtu.be/4qH4unVtJkE

• Computer Science Unplugged / Hebrew version

62/24

https://www.csfieldguide.org.nz/en/chapters/data-representation/numbers/
https://gadial.net/2017/06/11/number_bases/
http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/index.html
https://youtu.be/4qH4unVtJkE
http://www.csunplugged.org.il/
http://www.csunplugged.org.il/

Comic Relief *

אני מזמין אתכם לשלוח לי הצעות לתמונות שיופיעו על שקפים אלו לאורך הסמסטר*
63

