Extended Introduction to Computer Science
CS1001.py

Chapter B Integer Representation
Lecture 6a (in binary and other bases)

Amir Rubinstein, Michal Kleinbort

School of Computer Science
Tel-Aviv University
Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

* Slides based on a course designed by Prof. Benny Chor

http://tau-cs1001-py.wikidot.com/

Q27 XP O’ 1127V

77N py 'Xa7 wANT7 N1 ,7'N 1IYTINY 19D e
nwnvw 3 -7,0009 2 na 7N e

WTN IN D' I X7 .0y NN7wWn yiaw Xan vy e

NN - NT'N%7 0'WaT oY DD TV TN7IW TNINN 7¢ 1PN 2N D09 N —
T NN DPIRTY MY TV NP NINT? TWOR Nl Jwnn? 'y
DY NnwnY?

AWOKR NN DYON .n7ap NYWT (7'a010) DIT + NNDY NIT'O YRR UK DY —
.DITA 9NNWNY?

n7X NI97 00n7 X7 — NDOI NAUIDNZ N'VID NN'WY? DPIPT DX —

Plan for This Lecture

“God created the natural numbers;
all the rest is the work of man”

(Leopold Kronecker, 1823 —1891)

From hardware to bits

From bits to the Naturals
* Naturalsin binary (base 2)
* Large intsin Python
* Binary arithmetic (4, *)

Naturals in other bases

Negative integers
24/4

Deep Inside the Computer Circuitry

Most of the logic and memory hardware inside the computer are
electronic devices containing a huge number of transistors
* The transistor was invented in 1947, Bell Labs, NJ, and
won the inventors a Nobel Prize in 1956
¢ 3-10 nm (1 nanometer = 1072 meter)

At any given point in time, the voltage in each of these tiny devices can
be in two distinct states, for example either +5v or Ov. So transistors can
operate as binary switches, and are combined to form highly complex and
functional circuitry.

This means that data in the computer are represented in binary.

An extremely useful abstraction is to ignore the underlying electric
details, and view the voltage levels as bits (binary digits):

e QOvis viewedas 0, +5v is viewed as 1
24/5

Bits, Bytes and Beyond

1 bit = 0/1
1 byte = 8 bit

1 KB (Kilobyte) = 210 bytes = 1024 bytes
1 MB (Megabyte) = 220 bytes = 1024 KB
1 GB (Gigabyte) =230 bytes = 1024 MB
1 TB (Terabyte) =240 bytes = 1024 GB

From Bits to Numbers and Beyond -
Hierarchy of Abstraction Levels

* The next conceptual step is arranging these bits so they can represent
natural numbers.

* Then, we will strive to arrange natural numbers so they can represent
other types of numbers - negative integers, real numbers, complex
numbers, and furthermore characters, text, pictures, audio, video, etc.

S\ -

f

* We will begin at the beginning: From bits to integers.
24/7

Natural Numbers in Binary

I | 9 | 7 | 3 Decimal
o B'?N \ NITNRR
(10%) niNn nnwy (100
(102) (107)
|/1 | ; | 1\ ‘ 1\| Binary
NNy fuyen niair n(l;;u)u

@) (22) 2"

Natural Numbers in Binary

* Explanation using cards *

o o
oo .
o °
1 1 =9
(IR N¥NM) (ONwVY Nx¥N)

* Inspired by Computer Science Unplugged / Hebrew version

24/9

http://www.csunplugged.org.il/lessons/binary-numbers
http://www.csunplugged.org.il/lessons/binary-numbers

5(10) - 101(2)

0 1 1 0 1

13(10) - 1101(2)

0 1 1 0 0

12(10) - 1100(2)

0 1 1 1 1

15(10) - 1111(2)

Adding 1 (to 15)

1

0 1 1 1 1

Adding 1 (to 15)

Adding 1 (to 15)

Adding 1 (to 15)

1

0 1 1 1 0

carry

Adding 1 (to 15)

20

1
0 1 1 1 0
10

carry

Adding 1 (to 15)

21

0 1 1 0

carry

Adding 1 (to 15)

22

1

0 1 1 0 0

carry

Adding 1 (to 15)

23

1
0 1 1 0 0
10

carry

Adding 1 (to 15)

24

carry

0

Adding 1 (to 15)

25

1

0 1 0 0 0

carry

Adding 1 (to 15)

26

1
0 1 0 0 0
10

carry

Adding 1 (to 15)

27

0 0 0 0

carry

Adding 1 (to 15)

28

1

0 0 0 0 0

carry

Adding 1 (to 15)

29

carry

1 0 0 0 0

Adding 1 (to 15)

16(10) = 10000(2)

Naturals in Binary —an Important Property

* Q: How many distinct values can be represented using n bits?

e A:2"

24/ 31

0°2XM *1W 172 1A 1001 — TR AN

¢ | ©

32

0°2%7 7Y2IR 1°2 17207 1001 — 20ANn 1w

33

QNN 1w

@s;

@E_g

@s;

@E_g

7007 TWIRY 0% QAW 0°A¥A 178D

2700300 IWIPW 0% 21 0°2A%N 179

|

us) | e |e€D) ()
uD () |aD) |

2700300 IWIPW 0% 21 0°2A%N 179

|

"W ann qron

O S)

0 |aD) |« [
@)

37

2700300 IWIPW 0% 21 0°2A%N 179

|

<) | 0) |#ED) (&)
a) | a) |e) (&)
uD () |aD) |

2700300 IWIPW 0% 21 0°2A%N 179

v
v

v

@5

v

v

v
v
v
v

@:;

v

@:;

@

V
9

il

v

@
@

il

(I

@

ifi}

@:;

il

@Ee

il

@5

2703010 NI 2N 0°2¥HD 712D

(1/0 1% @21/120) NIPNWONR 'MY W' ann 224 ¢

2™ X0 7700 NIrNYOXN 1o0n

Naturals in Binary —an Important Property

Q: How many distinct values can be represented using n bits?

A 2"

For example, 64-bit sequence can represent

264 different values.

Used to represent the Naturals, the rangeis 0,1, ..., 26% — 1.

000 ...0 represents 0

64 bits

111 ... 1 represents 20 + 21 + .-+ 263 = 264 —1
—————

64 bits

24/ 41

Limits to Natural Number Representation

Modern computers are arranged by words, groups of fixed number of bits
that correspond to size of registers, units of memory, etc.

Word size is uniform across a computer, and depends both on the
hardware (processors, memory, etc.) and on the operating system.

Typical word sizes are 8, 16 (Intel original 8086), 32, or 64 bits (most
probably used by your PC or iMAC).

In many programming languages, integers are represented by either a
single computer word, or by two computer words (e.g. types int and
longinlJava).

This means that the range of representable integers is limited.

Things are quite different in Python, as we shall now see.

24/ 42

Handling Large Integers in Python

To “bypass” the word-size limit, several words should be manipulated
together correspondingly (to represent higher powers of 2).

This is either done explicitly by the user/programmer, or provided directly
by the programming language.

Python takes care of large integers internally, evenif they are way over
the word size.

>>> 2**199 #200 bits
803469022129495137770981046170581301261101496891396417650688

>>> 2**299 #300 bits
101851798816724304313422284420468908052573419683296812531807022467
7190649881668353091698688

>>> 3*%*97 - 2**121 + 17
19088056320749371083854654541807988572109959828

24/ 43

Complexity Issues

* Still, when manipulating large integers, one should think of the
computational resources involved:

» Time: How many basic operations (or, clock cycles) are needed for the
various arithmetic operations? Time will grow as n, the number of bits in
the numbers we operate on, grows. How time growsas a function of n is
important since this will make the difference between fast and slow tasks,
and even between feasible and infeasible tasks.

» Space: Thereisno difficulty to represent 22, or, in Python
2*%* (2**10) (asthe result takes four lines on my Python Shell
window, | skip it).
» But don’t try 22" (why?)!

* Asalready mentioned, We will define these notions precisely soon, but

you should start paying attention to such considerations. 04/ 44

Bit Addition and Multiplication

* Addition and multiplication of single bits are not different from
the decimal operations we are used to:

P T b Lo
1 1 10 1

1 0 1 0
0 1 1 0

0 0 0 0

24/ 45

Binary Addition

» Suppose we have two n-bit natural numbers in binary, A and B.

» Computing A + B is done "bitwise”, with possibly a carry bit
in each position.

» This logic can be implemented by hardware circuitry

o
o
=
w
o

» Property 1: The maximal length of the outputis n + 1 bits
> Property 2: At most 2n — 1 bit-additions needed

24/ 46

Binary Multiplication
> Suppose we have two n-bit natural numbers in binary, A and B.

» Computing A * B can also be done ”bitwise”, just like
decimal multiplication from elementary high-school

» This logic can be implemented by hardware circuitry

1100 (A = 12,)
x 1101 (B = 13,0)
1100 — Corresponds to the rightmost 'one' in B
+ 0000O0 — Corresponds to the next 'zero' in B
+(1) 1100
+1 100

=10011100 (A'B = 1564)

» Property 1: The maximal length of the outputis 2n bits
= Property 2: exactly n? bit-multiplications, < 4n? bit-additions
Try proving both at home!

24/ 47

Binary Subtraction and Division

* Subtraction and division are also performed in a similar way
to decimal, but we will not show it.

* You may be asked about this in your HW

24/ 48

Unary Representation of Naturals

* Consider the natural number nineteen (19 in decimal)
* In binary, it is represented as 10011

* Inunary (base 1) it is represented as 0000000000000000000

* The two representations refer to the same entity, nineteen. However, the
lengths of the representations are substantially different:
The unary representation is exponentially longer than the binary.

* To seethis, consider the natural number 2™.

* Inunaryitis represented by 2" digits
* Inbinary it is represented by a single ‘1’, followed by n ‘0’s.

24/ 49

Representation of Naturals in Base 10

A natural number N can be representedin base 10,

as a polynomial, whose coefficients are natural numbers smaller than 10.

N = a- 10+ ap_; - 1051+ . + a;- 10! + aq

(foreachi, 0 < a; <10)

The coefficients of the polynomial are the digits of N in its base 10
representation:

N(lO) = ArQr-1.-aA10a9

Claim: The natural number N represented as a polynomial of degree k
(has k + 1 digits, a; # 0) in base 10 satisfies 10k < N < 10%+1,
Do you see why?

24/50

Representation of Naturals in Base 2

A natural number N can be representedin base 2,

as a polynomial, whose coefficients are natural numbers smaller than 2.

N = a2+ ap_,- 281+ .+ a;- 21 + qq
(foreachi, 0<a; <?2)

The coefficients of the polynomial are the digits of N in its base 2
representation:

N(z) = QkQr-1.--A1Qg

Claim: The natural number N represented as a polynomial of degree k
(has k + 1 digits, a,, # 0) in base 2 satisfies 2k < N < 2k+1
Do you see why?

24/ 51

Representation of Naturalsin Base b > 1

A natural number N can be representedin base b (b > 1, an integer),
as a polynomial, whose coefficients are natural numbers smaller than b.

N = ap-bk+ ap_;-b¥ 1+ .. + a; - bl + aq

(foreachi, 0<a; <b)

The coefficients of the polynomial are the digits of N in its base b
representation:

Ny = arag-1..a10a9

Claim: The natural number N represented as a polynomial of degree k
(has k + 1 digits, a;, # 0) in base b satisfies bk < N < b**1,
Do you see why?

24/52

Representation of Naturals in Base > 1

Concllusion (proof in the recitations): The number of digits, d,
required for representing the natural number N in base b is

d= |logN|+ 1

* For example, 1024 = 210 requires 11 bits (10000000000)
22" requires 21%+1 = 1025 bits.

24/53

Other Bases > 1

Beside the commonly used decimal (base 10) and binary (base 2)
representations, other representations are also in use. In particular the
ternary (base 3), octal (base 8) and hexadecimal (hex, 0x, base 16) are
well known.

The lengths of representations in different bases differ. However, the
lengths in any two basesb > 1 and ¢ > 1 are related linearly.
A number represented with d digits in base b > 1 will take at most
[d - log.b] digitsin base ¢ > 1.
* For example, a number represented with d digits in base 10 will
take at most [d - log, 10] digits in base 2 (=bits).
* 921001
* 99 - 1100011

You may prove this in the Tirgul/HW

24/54

Different Base Representations in Python
* Python has built in functions for converting a number from decimal (base
10) to binary, octal (base 8), and hexadecimal (base 16).

>>> bin (1000)
'Ob1111101000"

>>> oct (1000)
'001750"

>>> hex (1000)
'0x3e8' #hexadedimal digits: 0,1,2,...,9,a,b,c,d,e,f

>>> type (bin (1000))
<class 'str'>

* The returned values are strings, whose prefixes 0b,00,0x indicate the
bases 2, 8, 16, respectively.

24/55

Hexadecimal Representations in Python

* Inhex thelettersa, b, ..., f indicate the “digits” 10, 11, ..., 15,
respectively.

>>> hex (10)

'Oxa'’

>>> hex (15)

'Oxf!

>>> hex (62)

'0x3e'! € 62 = 3*16 + 14

* Recitation ("tirgul”): Conversion to “target bases” + 2, 8, 16.

24/ 56

Converting to Decimal in Python

Python hasa built-in function, int, for convertinga number from base b
representation to decimal representation. The input is a string, which is a
representation of a number in base b (for the power of two bases, 0b,
00,0x prefixes are optional), and the base, b, itself .

>>> int ("0110",2)

[

>>> int ("0b0110",2)
©

>>> int ("f",16)

15

>>> int ("f££",16)
4095

>>> dnt(MEEET, 1T "a"for 10, "b" for 11, ...,"m" for 22
4605
>>> int ("ben",24) No "n"in base 23
6695

>>> int ("ben",23)
Traceback (most recent call last) :

File "<pyshell#16>", line 1, in

<module> int ("ben", 23)

ValueError: invalid literal for 1int () with base 23:’ben’

24/57

Comic Relief *

*

~

")a\

In Computer Programming; 1+ 1=

VDNDN TIIRD YN DIAPY HY WY MNNDND MYSN XD MIYI DINN PHRIN NN *

[

[

|

=

Negative Integers

An interesting issue is how negative integers can be represented.
Suppose we use . bits. We would like to divide the range of 2"

values represented by those bits such that about half would be used
for positive and about half for negative integers.

For example, 32 bits can be used to represent any integer, k, in the
range 231 < k < 231 -1,

We would also like arithmetic operations to be efficient.

24/59

Negative Integers - the-SignBitOption

» We could simply assign one bit (say, the leftmost) to
denote the sign: Ofor +, 1for -
» Example with 8 bit numbers: +1=00000001, -1=10000001

» Disadvantages?

= 0 has 2 representations (+0 and -0)

= arithmetical operations (e.g. addition) involving negative numbers
require slightly different algorithms (and computer circuitry).
For example, suppose we deal with 8 bit numbers, and add +1
(00000001) and -1 (10000001) in this representation. Just adding the
bits wll yield 10000010, which is -2...

» So the sign bit method is not in use.
» The method most often used is Two’s Complement

24/ 60

Two’s Complement (for reference only)

For the sake of completeness, we’ll briefly explain how negative integers
are represented in the two’s complement representation.

Suppose we have a k bit, non negative integer, M .

To represent —M , we compute 2K —M , and drop the leading
(leftmost) bit.

For the sake of simplicity, suppose we deal with an 8 bit number:

100000000 28 100000000 28
- 00000001 M =1 - 00001110 M = 14
11111111 -1 11110010 -14

It turns out that if non negative integers have 0 astheir leading (leftmost) bit,
then negative integers will have 1 astheir leading (leftmost) bit.

So the leading bit practically behaves as a sign bit, with about half the
numbers positive and half negative.

Main advantage of 2's Complement over sign bit method: operations require no

distinction between positive and negative numbers.
24/ 61

Highly Recommended Sources

"Computer Science Field Guide” chapter at
https://www.csfieldguide.org.nz/en/chapters/data-representation/numbers/

A nice explanation on counting bases from a wonderful blog by Dr. Gadi
Aleksandrowicz called “P™TN X9

https://gadial.net/2017/06/11/number_bases/

A very thorough explanation on binary numbers (with some nice demos):
http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/index.html

Two's complement method for representing negative integers, for those
interested: https://youtu.be/4gH4unVtJkE

Computer Science Unplugged / Hebrew version

24/ 62

https://www.csfieldguide.org.nz/en/chapters/data-representation/numbers/
https://gadial.net/2017/06/11/number_bases/
http://courses.cs.vt.edu/csonline/NumberSystems/Lessons/index.html
https://youtu.be/4qH4unVtJkE
http://www.csunplugged.org.il/
http://www.csunplugged.org.il/

Comic Relief *

There are 10

kinds of people

in the world:
those who

understand
binary code. and
those who don't.

VDNDN TIIRD YN DIAPY HY WY MNNDND MYSN XD MIYI DINN PHRIN NN *

