Extended Introduction to Computer Science
CS1001.py

Chapter A Error Types
Lecture 6b Tips for “Good” Code

Amir Rubinstein, Michal Kleinbort

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

" Slides based on a course designed by Prof. Benny Chor

http://tau-cs1001-py.wikidot.com/

(VDNON NP DY TPV 1IN - DYTNI) 9'\1‘\7‘” YNV NN

[N2'TN 7T ,NIXPAI9 ,NIKZIT ,'NIN '0OWN ,0PNYN 02V '019'0 ('0'0 NIdN . [In" nITIO" .A
NINADI ,XTANYG NINYAID L [IN''D 7w WIN'DN *70N1 070719 D21 T{7T :D'9011 D'RYI .
"[121" N12ON 11220 ,(NXM AT ,1'ANN) NIRAY A0 ,N'YIN'YI NI'RIPX ,NIAA 1 TO

N'INI'AN NV'YWA D'NYY AT L] yT'n '0I9'L AIX'" .
floating point NV'YA NINYY NTI71 QY D'D0N 2AIX! °
(Unicode ,ASCII) n'n arx" °
[]
[]

NI'IAN NIN'YA AIT'A ,NN'NA [1I'M "IN YIS'N NIDIA'0l D'0'02 D'NNMIAYX .
O notation -1 NI'>IQ'0
HOD-HOHIIRVUW-3YA N'YNN NU'YWA ND'YY N'YUNAN N'Y7119 7W WY NIR'YN °

T'7 2N'7 ,0'77201'R1 NINTA W'D

NISOIY NIRNAIT ,NXT'RINN AT [I' 2NN |1 "X YI9'N ,'¥N1IQ'D NNYY ° n'onip

Iterated squaring NU'Y2 N'YAL NPTNA NX7VN D"M90nn NMIN2 D'RYI .F
(N9 7w JupPN VOWNN) N'MNANON NINIYRY NP'TA
'TI0 NN9N NO97NNn"Y7 Diffie-Hellman 21710109

(GCD) "mropzn qnivn 77nn

NITINNI NITY NIR7NN

[IN"9 7 NIN'WA7 ARIYDT NNWIZA NN

DN YID'N 'Y

hash nix7a0

I107A NIYY}IOI (streams) D'ANT

PO BRI CYK DNMIA7R

I'T 790% NO'NT ,|NOXN NO'NT °

D'21M1 "2ani (OOP) DXy ANIN NIDN .

[ATN '9%7 0'O011 DRI, (MIPN [I'YNI YXINN) WY 17 ,NM0"0T NAMN X .

21NN TIP ,ARD 7NN, NIAIT VA ,NNTN TIP NI NN90 3

The Three C’s* of Good Programming

* Correctness:
* isit correct?
 what are the special cases?

* Complexity:
* is it efficient enough?
* can we improve?

* Clarity
* can we write it simpler or “nicer” at no
significant cost?
 is the code easy to modify / extend?

* Slide prepared by AR, inspired by a recent (2020) political interview in Israel

Bugs in Programs

A bug is an error in the program that causes incorrect or unexpected

behavior

The term originates from a real
bug that caused short circuits
in hardware (see this article)

Debugging aims at removing such
errors. One possible approach

is testing: executing a program,
with the intent of finding errors

14
S e A w /, sl N Jee Pesrwy oo
JJdes v = S S RP YTl e b
" ,.’.‘:f. nrooac LT, o) LAY TEEE FRN
LU ¢+ T T Py
- Ty A rsesiws
Fores e = 8)a Jr—J lr»J O'JJ
1= " ey dont -
k4 ST N
edd Jlartel (on'n- Ts'q. “Sl‘\‘ -‘\4\"
Aevie it ddes o Tecs
\Say Rcloﬁ*?o ?..o...' 3

Wil O L N

AT e

Fiest actaal A T od b b 1.
% LTV N Sy M Lleded (ot &
ties ziewd o .

Image from Wikipedia.
A page from the Harvard Mark Il electromechanical computer's log,
featuring a dead moth that was removed from the device (1947).

https://en.wikipedia.org/wiki/Harvard_Mark_II
https://www.nationalgeographic.org/thisday/sep9/worlds-first-computer-bug/

Types of Errors

* Syntax errors

- Commands that do not follow the syntax of a programming language
(as defined by its grammar), thus interpretation fails

- Discovered during interpretation

e Run-time errors

- Program is syntactically correct, but some operations cannot be
completed and program execution is terminated abruptly

- Discovered during execution

e Semantic errors

- Program runs and completes, but produces incorrect results
- Hardest to discover

Syntax Error Examples

3 =x

SyntaxError: can't assign to literal

def f£()
return 3

SyntaxError: invalid syntax

1t 3<4:
else:

SyntaxError: invalid syntax

Runtime Error Examples

4/0
Traceback (most recent call last):

4/0

ZeroDivisionError: division by zero

L =11,2,3]
L[3]

Traceback (most recent call last):

L[3]

IndexError: list index out of range

a=4
print (A)

Traceback (most recent call last):

print (A)

NameFError: name 'A' is not defined

Semantic Error Example

averagelO () :
""" compute the average of 10 numbers """

s = 0
i =1
i <= 10:
next num = float (input ("Enter next number"))
S += next num
i +=1

s/1

Tips!!

1. Diagnostic printouts

Strategically place print() statements to track information flow

2. Unit test (“divide and conquer”)

Test a single unit (e.g. function) at a time
Rely on other units' correctness

3. Python tutor and similar tools

4. Debugger

Most IDE’s (including IDLE) provide debuggers — tools that ease tracking a
program’s execution, step by step.

We do not use debuggers in this course (but you are welcome to try it).

https://pythontutor.com/visualize.html#mode=edit

10

The Three C’s* of Good Programming

* Correctness:
* isit correct?
 what are the special cases?

* Complexity
* is it efficient enough?
* can we improve?

* Clarity
* can we write it simpler or “nicer” at no
significant cost?
 is the code easy to modify / extend?

* Slide prepared by AR, inspired by a recent (2020) political interview in Israel

Writing “Good” Code

Writing “good” code is sometimes considered an art.
Recall: beauty is in the eyes of the beholder...

However there are some common practices, which are good to be
aware of. These often have significant affect on correctness and
cost as well.

We will explore some of these via examples.

Note: all examples are correct in the sense of input-output
relation.

Example 1a

e Can you figure out what this code is all about?

Example 1b

e And now?

1s leap (year):
yvears4 ==
yvears100 ==
yvears400 ==

13

Example 1c

e And how about this one?

solve(a,b,c):

d = (b**2) - (4*a*c) # the discriminant
soll = (-b-(d**0.5))/(2*a)
sol2 = (-b+(d**0.5))/ (2*a)

soll, sol2

14

1. Meaningful Names

* Meaningful names to both variables and functions should make
your code more self-explanatory

* For example, a general counter should be named: cnt/count/counter/cntr/..
* A specific counter can be named, e.g.: cnt days, cnt zeros, etc.
 Useindices (e.g. cntl, cnt2, cnt3)toindicate variables with similar “roles”
e Context should be taken into consideration (as in the last example)

e Bad names:

x variable, something, func

x tmp (except for a temporary auxiliary variable)

x 1,1,0,0

x the name of my cs intro lecturer = "Amir"

 Names often assigned for numbers:
* x,v,z -forreal numbers, point coordinates, etc.
* n,m,k -forintegers
* 1,7,k -forindices

Naming Conventions

 The following naming styles are commonly recommended in
Python:

» lower case with underscore - used for variables and functions names
> CapitalizedWords — (aka CamelCase) often used for classes (later in this course)

» UPPER CASE WITH UNDERSCORE - used for program constants

e Consistency is more important than choosing any specific
convention (which may occasionally even turn into an ideological
and emotional debate)

Example 2a

def count positives (lst):
'"'' count numbers > 0 in 1lst
positives = []
for x 1in lst:
1 x > 0:
positives.append (x)

return len(positives)

v

v

v

VS.

def count positives (lst):
'"'' count numbers > 0 in lst
cnt = 0
for x 1in 1lst:
1f x > 0:
cnt += 1

return cnt

'

'

'

17

Example 2b

def days in month (month) :
'"''" how many days in month (1=Jan,2=Feb,..,12=Dec)
1f month ==
return 28
el1f month == 1 or month == 3 or month == 5 or month == \
or month == 8 or month == 10 or month == 12:

L B |

return 31
return 30

VS.

def days in month (month) :
'''" how many days in month (1=Jan,2=Feb,.., 12=Dec)
long months = [1, 3, 5, 7, 8, 10, 12]
1f month ==
return 28
eli1f month I1n long months:
return 31

L B |

return 30

18

2. Memory Usage

 Often storing data in memory can save time
or make the code clearer

 However, use memory efficiently: large
memory consumption is likely to slow the
execution down, or even crash it

e Don’t try at home:
L = [1 1 range (10**10)]

Example 3

def powerZ2 (exp) :
'''" return 2%exp
1t exp == 0:
return 1

LI A |

res = 2
for 1 1in range(l, exp):
res *= 2

return res

def power?2 (exp) :
VS. '''" return 2%exp
res =1

LI B |

for 1 1n range (0, exp):
res *= 2

return res

20

3. Special Case Treatment

 Handling special cases separately often (but
not always) makes the code complicated
and less readable

* Avoid unnecessary separation of special
cases, except when you have a good reason

Example 4

def indices of odds(lst): def indices of odds(lst):

. . . VS. . . .
print indices of odd numbers print i1ndices of odd numbers
i =20 1 =20
while 1 < len(lst): for num 1in 1lst:

1t 1st[1]%2 == 1: 1f num%2 == 1:

print (1) print (i)

1 +=1 1 +=1

return None return None

VS.

def indices of odds(lst):

LI B |

print indices of odd numbers

LI B |

for 1 1in range(len(lst)):
1f 1st[1]%2 == 1:

print (i)

22 return None

4. Iteration Structure

* Choose the simplest and most appropriate
loop structure

e while vs. for
e directvs. indirect
e nested vs. flat

Example 5b

control digit (ID):

total = 0
i range (8) :

i % 2 ==
total += int (ID[i])

int (ID[1]) < 5:
total += 2*¥int (ID[1])

o\°

total += (2*int (ID[1]) 10)
0

total = total % 1
(10 - total) % 10

check digit =

str (check digit)

I

1

24

Example 5b

control digit (ID):

total = 0
i range (8) :
digit = int (ID[1])
i % 2 ==

total += digit

digit < 5:
total += 2*digit

total += (2*digit % 10) + 1

total = total % 10
check digit = (10 - total) % 10

str (check digit)

25

5. Code Duplication

* Avoid duplicating the same computation
multiple times- this may have negative
effects on the time / memory costs of your
code

 Store useful data in variables, useful code in
functions

Example 6

def sign (num) :

'"''" sign of a number '

1f num == O0:
return 0
else:

1T num > 0O:
return 1
else:
1f num < O:

L |

VS.

def sign (num) :

L I |

1f num O:
return 0

sign of a number

return -1
elif num > 0:
return 1
else:
VS. return -1
def sign (num) :
'"''" sign of a number '"'
return 2* (num > 0) - 1 + (num == 0)

27

28

6. Simplicity

Keep it simple (both visually and logically),
unless you know what you’re doing (and
why)

29

Example 7a

reverse lst(lst):
lst[::-1]

VS.

reverse lst (lst):
rev = []
n = len(lst)

i range (n) :
rev.append(L[n-1i-117)

rev

30

Example 7b

def second largest(lst):
''' computes second largest number in list '
lst.sort ()
return lst[-2]

)

'

VS.

def second largest(lst):
'''" computes second largest number in list '
maxl = max?2 = 1st[0]

for num 1n 1lst:
1f num > max2:
1f num > maxl:

max2 = maxl

maxl = num
else:

max2z2 = num

return max?2

)

!

7. “Under the Hood”

* Python is a powerful language with many
built-in shortcuts, but with great power
comes great responsibility

8. Comments

Comments (even good ones) do not excuse
unclear code

Before writing a comment, consider
clarifying the code itself

33

Some Funny Comments

When I wrote this, only God and I understood what I was doing
Now, God only knows

I dedicate all this code, all my work, to my wife, Darlene,
who will have to support me and our three children and the
dog once it gets released into the public.

I am not responsible of this code.
They made me write it, against my will.

drunk. fix later

Magic. Do not touch.

I am not sure if we need this, but too scared to delete.

Dear future me. Please forgive me.
I can't even begin to express how sorry I am.

s (| |3 || |23 ||| =

no comments for you!
it was hard to write so it should be hard to read

Python Styling Conventions
(for reference only)

Recall: beauty is in the eyes of the beholder...

PEP8 — Python Style Guide
http://legacy.python.org/dev/peps/pep-0008/

(PEP = Python Enhancement Proposals)

Online style checker: https://www.codewof.co.nz/style/python3/

We do not always follow these conventions ourselves...

34

http://legacy.python.org/dev/peps/pep-0008/
https://www.codewof.co.nz/style/python3/

Additional Styling Features - Spaces

Avoid extraneous whitespace in the following situations:

Immediately inside parentheses, brackets or braces.

Yes: func(var[l], {key: 2})
No: func(var[1 1, { key: 2 })

Immediately before a comma, semicolon, or colon:

Yes: 1f x == 4: print(x, V)
No: 1f x == : print(x, V)

Immediately before the open parenthesis that starts the argument list of a function call:

Yes: spam(1l)
No: spam (1)

Immediately before the open parenthesis that starts an indexing or slicing:

Yes: dict['key'] = list[index]
No: dict ['key'] = 1list [index]

Additional Styling Features - Spaces

Always surround the following binary operators with a single space on either side:
assignment (=), augmented assignment (+=, -= etc.), comparisons (==, <, etc.),
Booleans (and, or, not), in, is.

If operators with different priorities are used, consider adding whitespace around the
operators with the lowest priority(ies). Use your own judgment; however, never use more

than one space, and always have the same amount of whitespace on both sides of a binary
operator.

Yes: No:

1 = i+1 i=i+1

cnt += 1 cnt +=1

X = x*2 -1 X =x * 2 -1

res = xX*x + y*y res = x *x +y *y

