
Extended Introduction to Computer Science
CS1001.py

Randomness in Computing

* Slides based on a course designed by Prof. Benny Chor

Chapter A
Lecture 4b

Amir Rubinstein, Michal Kleinbort

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

http://tau-cs1001-py.wikidot.com/

• Intro – what is randomness and basic notions

• import random

• Random walk

• PageRank

Lecture Plan

2

• What is randomness? According to Wikipedia:

Randomness is the lack of pattern or predictability in events.

A random sequence of events, symbols or steps has no order and does not follow an
intelligible pattern or combination.

Individual random events are by definition unpredictable, but in many cases the
frequency of different outcomes over a large number of events (or "trials") is
predictable.

• The programs we have written so far were deterministic: given the same
input, their execution path will be identical.

• In many cases it is useful to include randomness in computations. Such
algorithms are termed randomized or probabilistic or coin flipping
algorithms. Practically, their execution path cannot be reproduced.

Randomness in Computing

3

From Wikipedia:

A Million Random Digits with 100,000 Normal Deviates
is a random number book by the RAND Corporation,
originally published in 1955.

The book, consisting primarily of a random number table, was an
important 20th century work in the field of statistics and random
numbers.

It was produced starting in 1947 by an electronic simulation of a
roulette wheel attached to a computer, the results of which were
then carefully filtered and tested before being used to generate
the table.

The RAND table was an important breakthrough in delivering
random numbers, because such a large and carefully prepared
table had never before been available. In addition to being
available in book form, one could also order the digits on a series
of punched cards.

Obtaining Random Sequences: a Piece of History

4

https://en.wikipedia.org/wiki/Random_number_book
https://en.wikipedia.org/wiki/RAND_Corporation
https://en.wikipedia.org/wiki/Random_number_table
https://en.wikipedia.org/wiki/Roulette_wheel
https://en.wikipedia.org/wiki/Punched_card

Obtaining Random Sequences (cont.)

• True Random Number Generators (TRNG):
A device that extract randomness from physical phenomena such as cosmic
radiation, radioactive decay, etc.

• A philosophical / meta-physical question for you to ponder about:

Are there any events in nature that are truly random?

• Recall Einstein’s quote: "God does not play dice with the universe."

referring to his views about quantum mechanics

(which is often misinterpreted, see here)

• Pseudo-random Number Generators (PRNG):
An algorithm that generates a long sequence that appears random (“random
enough”) w.r.t different tests. The sequence is generated deterministically, from
an initial random value called “seed”, which can be picked e.g. at startup by using
the system’s clock.

Image from:
http://www.smallplanet.us

5

http://www.techinsider.io/god-does-not-play-dice-quote-meaning-2015-11
http://www.smallplanet.us/

Example for PRNG – “Linear Congruential Generator”

𝑥𝑖+1 = 𝑎 ∙ 𝑥𝑖 + 𝑐 mod 𝑚

>>> a, c, m = 1, 7, 12

>>> x = 0 # x0
>>> for i in range(20):

print(x, end=" ") # end each print with a space

x = (a*x + c) % m

0 7 2 9 4 11 6 1 8 3 10 5 0 7 2 9 4 11 6 1 8

• The numbers in the sequence must eventually enter a cycle. The length of the
cycle is called the period of the PRNG.

• The choice of the parameters affects the period.
Try, for example, 𝑐 = 8 instead of 7.

𝑎 = 1, 𝑐 = 7,𝑚 = 12
𝑥0 = 0
𝑥1 = 7
𝑥2 = 2
𝑥3 = 9
…

The “seed”

6

• Luckily, Python employs a more sophisticated pseudo random number

generator, called a Mersenne Twister, with a period of size 219937 − 1

(will not be further discussed).

Randomness in Python

>>> import random

>>> random.random() #generate a random number ∈ 0, 1
0.9724062711684623

>>> random.random()

0.9793789492766168

>>> random.random()

0.2880152915931866

7

Randomness in Python – Some Useful Functions

>>> random.uniform(3.2, 12.01) # random number ∈[3.2, 12.01)
9.311113665186017

>>> random.randrange(0,1000,10) # random int from range(start, stop, step)

920

>>> random.choice([1,5,6,-44,9]) # random element from the input collection

-44

>>> lst = [random.choice("a"*5 + "bcdef") for i in range(1000)]

>>> lst[:10]

['c', 'a', 'a', 'a', 'a', 'e', 'b', 'a', 'a', 'a']

>>> lst.count("a")/len(lst)

0.497

>>> lst.count("b")/len(lst)

0.101

>>> L = [1,2,3,4,5]

>>> random.shuffle(L) #in place permutation

>>> L

[2, 5, 1, 4, 3]

8

Does Randomness Have any Uses in Computing?

Will see these

later in the

course

9

Use Example from this course

Simulation Random walk

Sampling Estimating 𝜋*

Cryptography Diffie-Hellman secret sharing**

Performance (efficiency) Fermat’s primality testing
Random QuickSort

Next example

* also program testing, polls,…
** and almost any cryptographic application: encryption, authentication,…

• A path that consists of a succession of random steps.

• Simple unbiased 1-Dimensional random walk
• a marker is placed at zero on the number line, and at each step

moves +1 or −1 with equal probability.

• There are numerous other versions, for example: higher
dimensions, biased walks, graph walks, etc.

Random walk in two dimensions.
https://upload.wikimedia.org/wikipedia/commons/f/f3/Ran
dom_walk_2500_animated.svg

-1 0 1 2 3 4-4 -3 -2

Random Walk

10

https://upload.wikimedia.org/wikipedia/commons/f/f3/Random_walk_2500_animated.svg

Properties of Random Walks

• What is the average distance from origin after n steps?

• What is the probability that a walk will ever return to the origin?

• What is the probability that 2 simultaneous random walks will meet?

• …

• And what about >1D?

• We will merely scratch the surface, by exploring the “back to the origin”

scenario.

11

Back to Origin in a 1D Simple Unbiased Random Walk

def back2origin():

pos = 0

num_steps = 0

while True:

step = random.choice([+1,-1])

pos += step

num_steps += 1

print("step", num_steps, ": position", pos)

if pos == 0:

break

return True

12

• It turns out (no proof here) that for dimension ≤ 2, a simple unbiased

random walk will eventually return to the origin with probability 1.

• But for higher dimensions the probability decreases as the dimension grows.

Random Walk in Action

• Random walks are used to simulate various types of phenomena
from a diverse range of fields, such as:

- Economics: shares prices

- Genetics: genetic drift (frequency of gene variants (alleles) in a population)

- Physics: Brownian motion and diffusion

- Ecology: population dynamics

- Networks: Twitter’s WTF ("Who to Follow")

- Internet: Google's Pagerank algorithm to rank internet pages (next slide)

- …

13

Random Walk at Google’s PageRank

• Interestingly, random walks are used for ranking webpages

• Watch: https://www.youtube.com/watch?v=meonLcN7LD4

• Ranks of pages can be approximated empirically using random walks, as

described in the above video, as well as computed analytically using

equation systems and some algebra (in particular Eigenvectors (וקטור עצמי))

14

https://www.youtube.com/watch?v=meonLcN7LD4

• What is randomness and basic notions

• import random

• Examples: random walk (and in particular PageRank)

Lecture Summary

15

