Extended Introduction to Computer Science
CS1001.py

Chapter A Randomness in Computing
Lecture 4b

Amir Rubinstein, Michal Kleinbort

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

" Slides based on a course designed by Prof. Benny Chor

http://tau-cs1001-py.wikidot.com/

Lecture Plan

* |ntro —what is randomness and basic notions
random
e Random walk

* PageRank

Randomness in Computing

 What is randomness? According to Wikipedia:

Randomness is the lack of pattern or predictability in events.

A random sequence of events, symbols or steps has no order and does not follow an
intelligible pattern or combination.

Individual random events are by definition unpredictable, but in many cases the
frequency of different outcomes over a large number of events (or "trials") is
predictable.

 The programs we have written so far were deterministic: given the same
input, their execution path will be identical.

* In many cases it is useful to include randomness in computations. Such
algorithms are termed randomized or probabilistic or coin flipping
algorithms. Practically, their execution path cannot be reproduced.

Obtaining Random Sequences: a Piece of History

From Wikipedia:

A Million Random Digits with 100,000 Normal Deviates
is @ random number book by the RAND Corporation,
originally published in 1955.

The book, consisting primarily of a random number table, was an
important 20th century work in the field of statistics and random
numbers.

It was produced starting in 1947 by an electronic simulation of a
roulette wheel attached to a computer, the results of which were
then carefully filtered and tested before being used to generate
the table.

The RAND table was an important breakthrough in delivering
random numbers, because such a large and carefully prepared
table had never before been available. In addition to being
available in book form, one could also order the digits on a series
of punched cards.

73735
02965
98859
33666
81666

15838
89793
78155
16381
75002

99982
84543
77757
80871
30500

45963
58303
23851
62570
26440

47174
34378
22466
66207
BOB27

27601
87442
54043
32792
28220

78134
80708
27965
64775
20422

76866
08730
81978
11698
53867

62686
50033
46176
87989
12444

63873
20025
62394
78428
05720

14330
56522
57323
99314
37797

44711
14021
42391
72248
71840

https://en.wikipedia.org/wiki/Random_number_book
https://en.wikipedia.org/wiki/RAND_Corporation
https://en.wikipedia.org/wiki/Random_number_table
https://en.wikipedia.org/wiki/Roulette_wheel
https://en.wikipedia.org/wiki/Punched_card

Obtaining Random Sequences (cont.)

* True Random Number Generators (TRNG):

A device that extract randomness from physical phenomena such as cosmic
radiation, radioactive decay, etc.

* A philosophical / meta-physical question for you to ponder about:

Are there any events in nature that are truly random?

* Recall Einstein’s quote: "God does not play dice with the universe."
referring to his views about quantum mechanics

(which is often misinterpreted, see here)

God does
not play dice
with the Universe

Image from:
http://www.smallplanet.us

* Pseudo-random Number Generators (PRNG):
An algorithm that generates a long sequence that appears random (“random
enough”) w.r.t different tests. The sequence is generated deterministically, from

an initial random value called “seed”, which can be picked e.g. at startup by using
the system’s clock.

http://www.techinsider.io/god-does-not-play-dice-quote-meaning-2015-11
http://www.smallplanet.us/

Example for PRNG — “Linear Congruential Generator’

Xiy1 = (a-x; +c)modm a=1c=7m=12

xOZO\
Xy =7 The “seed”
X, = 2
X3 =9

>>>a, ¢, m=1, 7, 12

>>> x = 0 # x,

>>> i range (20) :

print (x, end=" ") # end each print with a space

)
m

o®

x = (a*x + c)

0729411 618 3105072 9411 o1 8

The numbers in the sequence must eventually enter a cycle. The length of the

cycle is called the period of the PRNG.

The choice of the parameters affects the period.
Try, for example, ¢ = 8 instead of 7.

4

Randomness in Python

* Luckily, Python employs a more sophisticated pseudo random number
generator, called a Mersenne Twister, with a period of size 219937 — 1

(will not be further discussed).

>>> random

>>> random.random () #generate a random number € [0,1)
0.97240062711684623
>>> random.random ()
0.9793789492766168
>>> random.random ()
0.2880152915931866

Randomness in Python — Some Useful Functions

>>> random.uniform (3.2, 12.01) # random number €[3.2, 12.01)
9.311113665186017

>>> random.randrange (0,1000,10) # random int from range (start, stop, step)
920

>>> random.choice([1,5,6,-44,9]) # random element from the input collection
-44
>>> 1st = [random.choice("a"*5 + "bcdef") i range (1000)]

>>> 1st[:10]
['C', lal, lal, lal, lal, lel, lbl, lal, lal, lal]

>>> 1st.count () /len (lst)

0.497

>>> lst.count ("b")/len(lst)

0.101

>>> 1L = [1,2,3,4,5]

>>> random.shuffle (L) #in place permutation
>>> 1

(2, 5, 1, 4, 3]

Does Randomness Have any Uses in Computing?

_ Example from this course

Simulation Random walk
Sampling Estimating r”
Cryptography Diffie-Hellman secret sharing™

Performance (efficiency) Fermat’s primality testing
Random QuickSort

* also program testing, polls,...

Next example

—_—

e

Will see these
later in the
course

**and almost any cryptographic application: encryption, authentication, ...

Random Walk

* A path that consists of a succession of random steps.

e Simple unbiased 1-Dimensional random walk
* a marker is placed at zero on the number line, and at each step
moves +1 or =1 with equal probability.

YN

A
v

S I S A A
I I
-4 -3 -2-1 01 2 3 4

* There are numerous other versions, for example: higher
dimensions, biased walks, graph walks, etc.

Random walk in two dimensions.
https://upload.wikimedia.org/wikipedia/commons/f/f3/Ran
dom walk 2500 animated.svg

10

https://upload.wikimedia.org/wikipedia/commons/f/f3/Random_walk_2500_animated.svg

Properties of Random Walks

What is the average distance from origin after n steps?
What is the probability that a walk will ever return to the origin?

What is the probability that 2 simultaneous random walks will meet?

And what about >1D?

We will merely scratch the surface, by exploring the “back to the origin”

scenario.

Back to Origin in a 1D Simple Unbiased Random Walk

backZ2origin () :
pos = 0
num steps = 0
step = random.choice([+1,-11])

pos += step
num steps += 1
print ("step", num steps, ": position", pos)

* It turns out (no proof here) that for dimension < 2, a simple unbiased

random walk will eventually return to the origin with probability 1.

e But for higher dimensions the probability decreases as the dimension grows.

12

Random Walk in Action

 Random walks are used to simulate various types of phenomena
from a diverse range of fields, such as:

Economics: shares prices

- Genetics: genetic drift (frequency of gene variants (alleles) in a population)
- Physics: Brownian motion and diffusion

- Ecology: population dynamics

- Networks: Twitter’s WTF ("Who to Follow")

- Internet: Google's Pagerank algorithm to rank internet pages (next slide)

Random Walk at Google’s PageRank

* Interestingly, random walks are used for ranking webpages

The Anatomy of a Search Engine 20.03.2003 10:16 Uhr

The Anatomy of a Large-Scale Hypertextual Web
Search Engine

Sergey Brin and Lawrence Page

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey(@cs.stanford.edu and page(@cs.stanford.edu

 Watch: https://www.youtube.com/watch?v=meonLcN7LD4

* Ranks of pages can be approximated empirically using random walks, as
described in the above video, as well as computed analytically using

eguation systems and some algebra (in particular Eigenvectors (%Y 70p1))

14

https://www.youtube.com/watch?v=meonLcN7LD4

Lecture Summary

e What is randomness and basic notions

random

 Examples: random walk (and in particular PageRank)

