Extended Introduction to Computer Science
CS1001.py

Chapter A Python Memory Model (cont.),
Lecture 4 Collections,
Expression in Python

Amir Rubinstein, Michal Kleinbort

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

* Slides based on a course designed by Prof. Benny Chor

http://tau-cs1001-py.wikidot.com/

Q%P DY0TY

.NNVAX NIQ'ON py 'YAP YU'AN? NNWOXRN NX DON 7TIN
T 227 |IDTY 'R TV W07 TXD 2NpA DTV

N2 14-15 "2 0'TIN'7 NPOSn D'"PNN ANEN [IUXRD DI
.0'910NN NTNN? NIXY D"'PNN
.15:10-16:00 2 o"pn* v'wn —

Last Time

List comprehension

Functions

— Definition, formal parameters
— Call, actual parameters
value

“The three C’s”

— Correctness
— Complexity
— Clarity

Python’s Memory Model
— Equality vs. identity
— Mutable vs. immutable types, assignment vs. mutation

—Function-calbmechanism-{by-address} today

This Lecture

* Python’s Memory Model (cont.)

— Function call mechanism (by address)

 More Collections Types in Python
— tuple, dictionary, set

* Expression in Python

e Randomness

Python’s memory model

* Will be done mostly interactively in class. Slides that cover this
are also available in the course site.

* The next slides summarize what we will see

Python’s Memory Model (reminder)

Obijects are stored at specific memory locations
id (objectl) == id(object2) ifandonlyif objectl object2

Warning: For optimization reasons, two objects with non-overlapping lifetimes
may have the same id value. Furthermore, in two different executions, the same
object may be assigned different id. And obviously this is platform dependent.

Variables are temporary names for memory addresses

Memory address does not imply value, Value does not imply memory address
(except for “small” integers, and some strings, for optimization)

Assignment of one variable to another merely creates another reference to the
object.

Mutable objects, such as lists, allow changing their "inner components" without
changing the memory location of the "containing" object.

Python Tutor http://www.pythontutor.com/visualize.html#mode=edit.

http://www.pythontutor.com/visualize.html#mode=edit

Python's Mechanism for Passing Functions' Parameters

Different programming languages have different mechanisms for passing
arguments when a function is called (executed).

In Python, the address of the actual parameter is passed to the
corresponding formal parameters in the function.

An assignment to the formal parameter within the function body creates a
new object, and causes the formal parameter to address it. This change is
not visible to the original caller's environment.

However, when the function execution mutates one of its parameters, its
address in the function does not change, and it remains in the same
address as in the calling environment. So such mutation does affect the
original caller's environment. This phenomena is known as a side effect.

Information Flow and Side Effects of functions

* To conclude, we saw three ways of passing information
from a function back to its original caller:

1. Using value(s). This typically is the safest
and easiest to understand mechanism.

2. Mutating a mutable formal parameter. This often is
harder to understand and debug, and more error
prone.

3. Via changes to variables that are explicitly declared
global. Again, often harder to understand and
debug, and more error prone.

Comic Relief *

N

»

- - .
- /\ -
In Computer Programming; 1 + 1=

" = B: 2
N

10 p— i B b

— — — 44/" N —_—

JVONON TN PN DAPY DY IYAPY MNNND MYNN D MOV DINN PHIN NN *

More Collections in Python

As you recall, collections (aka containers) are objects
that contain other “inner” elements.

— We saw types str, 1ist, range

There are other useful collections in Python. Here
are common ones, classified by two properties: order

and by mutability.

1(

Ordered (sequence) unordered
type example type Example
Mutable list [1,2,3] set {1,2,3}
dict {1:"a", 2:"b", 3:"c"}
Immutable | str "123"

range |range(l,4)
Tuple | (1,2, 3)

Tuples

Single, double, triple,... = tuple

Tuples are much like lists, but syntactically they are enclosed
in regular brackets, while lists are enclosed in square brackets.

In contrast to lists, tuples are immutable

>>> a = (2,3,4)
>>> b = [2,3,4]
>>> type (a)

’ ’

<class 'tuple'>

>>> type (b)

<class 'list'>

>>> [a[li]l==b[1i] i range (3)]

[True, True, True]

>>> a==Db
False

>>> b[0] = 99
>>> a[0] = 99

TypeError: 'tuple' object does not support item assignment

Using tuples for function return Values

* Recall a function can return a single value. But look at this:

mydivmod (a,b) :

return quotient and remainder """
a//b, a%b

>>> mydivmod (21, 5)

(4, 1)

>>> type (mydivmod (21,5))

<class 'tuple'>

>>> mydivmod (21,5) [0]

|
>>> gq,r = mydivmod(21,5) (a convenient shortcut)
>>> print (g, r)

4 1

* Syntactically, this function returns a single value of type tuple.
., So practically, we can “bypass” the above mentioned constraint.

Sets (type set)

* Python’s set closely resemble the mathematical notion of a set
* No repetitions, no order

 Set members must be immutable (we may get back to this later
in the course). Note the set itself is mutable.

>>> s = {1,2,3,"a"}
>>> type(s)
<class 'set'>

>>> s.add(4) # s is changed in-place, returns None
>>> S

{1, 2, 3, 4, 'a'}

>>> s.add("4")

>>> S

{1, 2, 3, 4, '4', 'a'}

>>> s.intersection({1,11,111})

{1}

>>> s.union ({1,11,111})

{1, 2, 3, 4, '4', 11, 111, 'a'}

* We urge you to explore additional useful functionalities od sets
13

14

Dictionaries (type dict)

Python’s dicts contain pairs of key:value. Used to represent
mappings: a set of keys, each mapped to some value.

Keys cannot repeat and are immutable (thus form a set). Note
the dict itself is mutable.

>>> d = {"France":"Europe", "Germany":"Europe", "Japan":"Asia"}
>>> type (d)

<class 'dict'>

>>> d # order of elements not necessarily as in initialization
{'Germany':'Europe', 'France':'Europe', 'Japan':'Asia'}

>>> d["Japan"]

'Asia'

>>> d["Asia"]

KeyError: 'Asia'

>>> d["Israel"]

KeyError: 'Israel'

>>> d["Israel"] = "Asia"

>>> d["Israel"]

'Asia’

Dictionaries (type dict)

>>> d = {"France":"Europe", "Germany":"Europe", "Japan":"Asia"}

e
>>> key d: = l dict (and set) are iterable]
print (key, "is 1in'", dlkey])

Germany 1s 1n Europe
France 1s 1in Europe

Japan 1s in Asia

Note: order of elements not necessarily as in initialization

e This actually changed in Python version 3.7: Dictionary order is

15

guaranteed to be insertion order. However, it's not a good
practice to rely on it because it is version/language dependent.

16

Dictionaries (type dict) — Example

Let’s write a function that computes the number of occurrences
of each letter in a given text.

Input: text (type string)
Output: pairs letter:count (type dict)

char count (text) :

d = {}
ch text:
ch d:
d[ch] += 1
dlch] =1

d

Advantages of dict and set over ordered collections

17

Why should we consider using dict or set in the first place?

Key observation, not explained at this point in the course (but it
will be, when we see hash tables later on): membership

checking is much “cheaper”

— In particular, checking if an element belongs to a set or a dictionary is an
operation whose efficiency does not depend on the size of the collection

>>> s = {1,2,3,"a"}
>>> 2 S

True

>>> "on S

False

A larger set will require
roughly the same time

>>> 1st = [1,2,3,"a"]
>>> 2 lst

True

>>> "on lst

False

A larger list will require
more time

Comic Relief *

nyy vin'n

D210NNI NMXY DWW
NN N7 DY

NRY'l Naa ,jinba

2 MIP , T ,Npwn ,|ITa — DAY DY

Wi-Fi & Battery

IVONDN THNRD YN DXPY DY IWAPY NMINND MYNN YD MOV DONN PRI DN *

19

Before we Move Beyond Python

We are almost done with the “introduction to Python” part pf
our course

The following slides contain material that will not be taught
this semester about grammars, with one exception: a specific
slide about expressions in Python

All the slides are left here for reference

Grammars, Syntax vs. Semantics

* Syntax: the form of a valid program
— Every language has its own syntax
— Example: print ("abc") is avalid form, print ("abc) is not
— Syntax can be defined by a grammar (next slides)

* Semantics: the meaning of the program and the expected
results of executing it

— Example: print ("abc™) will print the string inside the brackets to
the screen

Specifying a Syntax

The syntax of a programming language is formally defined
using a Grammar

— Similar to the case of Natural Language, yet with much less
irregularities

Reading Grammars takes some getting-used-to, but is not
hard

Before evaluating your program, the interpreter (e.g. IDLE)
verifies that it conforms to the Grammar

Specifying Semantics?

* Much more cumbersome to do formally, and we will not cover
this in this Intro course

* You will see a bit of that in the 3" year Compilation course,
and more if you study electives related to Software

Verification

Grammar

A grammar is defined by the following:
— The alphabet of the language

— A set of variables representing types of phrases or
clauses in the sentence

— The set of rules of the grammar

 We say a grammar forms (or yields) a string if
we can derive the string using the rules
repeatedly, until there are no variables left

Example #1

<SENTENCE> — <NP> <VERB>

<NP> - <NOUN>
<NOUN> — boy | girl | cat
— a | the

<VERB> — touches | likes | sees

Which strings can be formed using this grammar?

<SENTENCE> — <NP> <VERB>

— <NOUN> <VERB>
- a <NOUN> <VERB>
- a girl <VERB>
- a girl likes

in

24

| stands for “or”

Example #1

<SENTENCE> — <NP> <VERB>

<NP> — <NOUN>
<NOUN> — boy | girl | cat
— a | the

<VERB> — touches | likes | sees

Which of the following strings can be formed using this grammar?
“a girl likes” v
“the boy sees” v

“the girl likes the cat” X[
[

25

Example #2

(S) = a(S)a | b(S)b | c

Which strings can be formed using this grammar?
(S) = a(S)a

— aa(S)aa

— aab(S)baa

— aabcbaa

26

Example #2

(S) = a(S)a | b(S)b | c

Which strings can be formed using this grammar?

(S)—c
i

27

Example #2

(S) = a(S)a | b(S)b | c

Can you generalize:

which strings can be formed using this
grammar?

28

Parse Tree

e Parsing is the process of analyzing the syntactic
structure of a string.

* This can be represented in the following form,
termed parse tree or syntax tree.

[e A e N s N e A

]] i

Parse tree
for
“a girl likes”

<SENTENCE>

girl likes

Python’s Grammar

* Python’s full grammar is defined here

— You are not required to understand what’s written
there, though

* Python code is parsed according to this
grammar

https://docs.python.org/3/reference/grammar.html

Statements in Python

* Can be either simple or compound

Simple statements

Compound statements

* expressions, e.g.,
3+4**2

* assignments, e.g.,
res = 400

* return statement
res

* break statement

and many more examples

* if statement
a > b:
condition block
* while statement
a > b:
loop block
» for statement
a lst:
loop block

and many more examples

31

32

Statements in Python: Sketch

expression
assignment

-
Ea
for

Expressions

* An expression is a statement which "has a value". That is, anything that can
be the right hand side of an assignment (e.g., res=<expression>).

 Examples:

ol 1

3+2
x #Suppose x was defined
X>y
x>y "A" in "Amir"
sum([1,2,3,4,5])
res = [* %2 X [1,2,3] x-1 != 0]
—
Also: Conditional expression
sum
"equal" X== "not equal"
X,y: Xty

More about lambda expressions soon
33

(VDNON NP DY TPV 1IN - DYTNI) 9'\1‘\7‘” YNV NN

|N2'Tn 7TIn ,NI'X21I9 ,INTIY 'NIN '09Wn ,D'ANWN L0 '019'0 ('0'02 NIdN L] [In"o nITIO" .A

NI'x;Io1 ,NTANY? nry¥in ,%W%W—E%B‘fﬂm .:0'S5011 0'RYID L]

"[122" N12DN 1220 ,(NXM AT ,11ANN) NINAY AI0 ,N'YIN'YI NI'RIPX ,NIAA 1 TO

N'INI'AN NV'YWA D'NYY AT L] yT'n '0I9'L AIX'" .
floating point NV'YA NINYY NTI71 QY D'D0N 2AIX! °
(Unicode ,ASCII) n'n arx" °
[]
[]

NI'IAN NIN'YA AIT'A ,NN'NA [1I'M "IN YIS'N NIDIA'0l D'0'02 D'NNMIAYX .
O notation -1 NI'>IQ'0
HOD-HOHIIRVUW-3YA N'YNN NU'YWA ND'YY N'YUNAN N'Y7119 7W WY NIR'YN °

T'7 2N'7 ,0'77201'R1 NINTA W'D

NISOIY NIRNAIT ,NXT'RINN AT [I' 2NN |1 "X YI9'N ,'¥N1IQ'D NNYY ° n'onip

Iterated squaring NU'Y2 N'YAL NPTNA NX7VN D"M90nn NMIN2 D'RYI .F
(N9 7w JupPN VOWNN) N'MNANON NINIYRY NP'TA
'TI0 NN9N NO97NNn"Y7 Diffie-Hellman 21710109

(GCD) "mropzn qnivn 77nn

NITINNI NITY NIR7NN

[IN"9 7 NIN'WA7 ARIYDT NNWIZA NN

DN YID'N 'Y

hash nix7a0

I107A NIYY}IOI (streams) D'ANT

PO BRI CYK DNMIA7R

I'T 790% NO'NT ,|NOXN NO'NT °

D'21M1 "2ani (OOP) DXy ANIN NIDN .

[ATN '9%7 0'O011 DRI, (MIPN [I'YNI YXINN) WY 17 ,NM0"0T NAMN X .

21NN TIP ,ARD 7NN, NIAIT VA ,NNTN TIP NI NN90 3

34

