
Extended Introduction to Computer Science
CS1001.py

Python’s Memory Model

* Slides based on a course designed by Prof. Benny Chor

Chapter A
Lecture 3

Amir Rubinstein, Michal Kleinbort

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

http://tau-cs1001-py.wikidot.com/

This Lecture

• Python’s memory model
– Equality vs. Identity, memory address

– Mutable vs. Immutable types

– Function call mechanism (by address)

2

Equality and Identity

3

Identity, equality, or lack thereof, are of course central issues in society
and politics. Struggle over them has shaped and defined nations and
societies, as we witness again recently in neighboring countries, here in
Israel, and even next to Wall Street:

“The struggle for identity and
equality fought by everyday
people", pic taken from
www.graydogsbooks.com

These larger issues are, however, out of the scope of our course.
We will deal with them only in the context of Python objects.

Equality ≠ Identity in Python
• As we already saw, Python can check equality of an integer and a float.

>>> 1 == 1.0

True

• Casting: Python's interpreter coerces the integer 1 to a float 1.0, then checks
equality of the two values. In this case, the two values are indeed equal, so it
returns True. But are these two objects (numbers) identical? Let us ask
Python first:
>>> 1 is 1.0

False

>>> 1 is not 1.0

True

• These identity operators is and is not examine if the two objects referred to
are the same object in memory. As we saw above, identity is a stricter
relation than equality (identity implies equality, but not vice versa).

4

Python's id Function
• Python's interpreter has a built in function, id, which returns the ”identity" of an

object. Using a different terminology, id returns the address of the object in
memory. The address is an integer which is guaranteed to be unique and constant
for this object during its lifetime.

• Clarification:

id(object1) == id(object2) if and only if object1 is object2

• Warning: For optimization reasons, two objects with non-overlapping lifetimes
may have the same id value. Furthermore, in two different executions, the same
object may be assigned different id. And obviously this is platform dependent.

• When using id(), we recommend using the hexadecimal (base 16) representation
of the outcome. This obviously is equivalent, yet often more transparent than the
decimal representation.

• Do not worry if you are not familiar with the hexadecimal base 16 yet. We will
explain it soon.

5

The Effect of Assignment
• Variables' names (identifiers) in Python correspond to an object in memory.

As a result of a new assignment to an existing variable identifier, a new
object (in a different location in memory) is referred to by the same
identifier.

• The id function allows us to “probe" memory locations directly, and even
compare them over time.

>>> x = 1

>>> id(x)

1494016

>>> hex(id(x))

'0x16cc00'

>>> x = 2

>>> hex(id(x)) # new object, new memory location

'0x16cc10' # exactly 16 bits away from previous

6

Values and Memory Address
• The address of an object is typically not uniquely determined

by its value:

>>> x = 1000

>>> y = 1000

>>> x==y

True

>>> x is y

False

• We will now probe the exact memory addresses:
>>> hex(id(x))

'0x170d098'

>>> hex(id(y))

'0x170d048'

7

Optimization for “Small” Integers
• However, “small“ integers (typically between -5 and 256) do

have a constant memory address along the lifetime of an IDLE
session, which is independent of execution history.

• The goal of this is the optimization of memory access.

>>> x = 1

>>> y = 1

>>> x is y

True

>>> hex(id(x))

'0x16cc00'

>>> hex(id(y))

'0x16cc00' # same location as x

>>> 2+3 is 1+4

True
8

Further Optimization
• There are several other cases where Python employs some

optimization of memory access:

• But

• Confused? You should be!

9

>>> x = 257

>>> y = 257

>>> x is y

False

>>> 257 is 257

True

Assignment Between Variables

>>> x = 257

>>> y = 256+1

>>> x is y

False

>>> z = x

>>> x is z

True

• So the effect of the assignment z = x is that no new object
is created. The only effect is that the variable z now refers to
the same object as x.

10

Lists are Mutable
• We saw that Python's list is an ordered sequence of elements.

Furthermore, list elements have indices, enabling direct (aka
“random") access.

• We now ask if list elements can not just be individually
accessed, but also be individually assigned?

>>> lst = [1,2,3]

>>> lst[2]

3

>>> lst[2] = "Agama stellio"

>>> lst

[1, 2, 'Agama stellio']

• The assignment lst[2] = "Agama stellio" has mutated
(changed) the list.

• We say that lists are mutable objects.
11

Strings are Immutable
• Like lists, strings are also indexed (they are "subscriptable"): Individual

characters can be directly accessed, using their index. Consider our favorite
string, for example:
>>> species = "Agama stellio"

>>> species[0]

'A'

>>> species[1]

'g'

>>> species[5]

' '

• However, unlike lists, strings are not mutable. Assignment results in an error.

>>> species[2] = "t"

Traceback (most recent call last):

File "<pyshell#4>", line 1, in <module>

species[2]="t"

TypeError: 'str' object does not support item assignment

12

int and float are Surely not Mutable

• Unlike lists or strings, numbers (int, float) cannot even
be indexed: we cannot directly access their "inner
elements", nor can we modify them.

• Consequently, numbers (int, float) are not mutable.

13

Assignments and Reassignments to
Integer Variables

• We start with a few assignments to integer variables of type int:

>>> n = 10

>>> m = n

>>> n = 11

>>> m

10

>>> n

11

• So far, no surprises (we hope).
• Essentially the same behavior will occur with numbers of type 'float'.

14

Assignments to String Variables
• And now, a few assignments to string variables:

>>> course1 = "Intro2CS"

>>> course2 = course1

>>> course1 = "Discrete math"

>>> course2

'Intro2CS'

>>> course1

'Discrete math'

• No surprises here either.

15

Assignments to List Variables

• And a few assignments to list variables:

>>> list1 = [1,2,3]

>>> list2 = list1

>>> list1 = [6,7,8,9]

>>> list2

[1,2,3]

>>> list1

[6,7,8,9]

• Still, no surprises (you may start wondering if this discussion is
leading anywhere…)

16

Assignments to List Variables, take 2
• But now look at this - a few assignments to components of list

variables:

>>> list1 = [1,2,3]

>>> list2 = list1

>>> list1[0] = 97 # mutating list1

>>> list1

[97,2,3] # as expected

>>> list2

[97,2,3] # list2 also mutated!!!

• What the %$*# is happening here?
17

1818

>>> list1 = [1,2,3]

>>> list2 = list1

>>> list1[0] = 97

list1

Assignments vs. Mutation
1

2

3

1919

>>> list1 = [1,2,3]

>>> list2 = list1

>>> list1[0] = 97

list1

list2

Assignments vs. Mutation
1

2

3

2020

>>> list1 = [1,2,3]

>>> list2 = list1

>>> list1[0] = 97

list1

list2

• The assignment list1 = [1,2,3] creates a list object, [1,2,3], and a reference
from the variable name, list1, to this object.

• The assignment list2 = list1 does not create a new object. It just creates a
new variable name, list2, which now refers to the same object.

• When we mutate list1[0] = 97, we do not change these references. Thus,
displaying list2 produces [97,2,3].

(See this demo on Pythontutor)

Assignments vs. Mutation
97

2

3

http://www.pythontutor.com/visualize.html#code=list1%20%3D%20%5B1,2,3%5D%0Alist2%20%3D%20list1%0Alist1%5B0%5D%20%3D%2097%0A&cumulative=true&curInstr=0&heapPrimitives=true&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

A Graphical View:
PythonTutor

21

• A web-tool that helps visualize memory image:
http://www.pythontutor.com/visualize.html#mode=edit

• Make sure to use Python 3

• Use it to check out the examples in the next few slides

• However, bare in mind this tool does not always fully
comply with Python memory model (esp. with regard
to optimizations)

http://www.pythontutor.com/visualize.html#mode=edit

More Examples:
Assignments vs. Mutation

• For mutable objects, we saw that some “components" of the object can
subsequently be changed. This does not change the memory location of the
object. For example, mutating a list.

>>> list1 = [1,2,3]
>>> hex(id(list1))
'0x290deb8'
>>> list1[0] = 97 # mutating list1
>>> list1
[97,2,3] # mutated indeed
>>> hex(id(list1))
'0x290deb8' # memory location of list1 UNCHANGED

• And now, let's just repeat the first assignment

>>> list1 = [1,2,3]
>>> hex(id(list1))
'0x290d968' # NEW object, new memory location

• For mutable objects, like lists, a new assignment to the same identifier with
identical value creates a new object with a new address.

23

More Examples:
Assignments vs. Mutation

• Let us examine lists with identical values yet different addresses.
>>> list1 = [1,2,3]

>>> hex(id(list1))

'0x15e9b48'

>>> list2 = list1

>>> hex(id(list2))

'0x15e9b48' # same same

>>> list3 = [1,2,3]

>>> hex(id(list3))

'0x15e9cb0' # but different

• Now let us see what happens with the components of these lists:
>>> list1[0] is list3[0]

True

>>> hex(id(list1[0]))

'0x16cc00' # looks familiar?

>>> hex(id(list3[0]))

'0x16cc00' # same as previous

• What graphic images of these lists in memory follow?
24

Deleting an Object
• So far, we saw that an assignment adds a variable name (if it

was not assigned before) and associates an object with it.
• It is also possible to delete a variable. After deletion, the

variable no longer exists, and referring to it in an expression
yields an error.

>>> x = 10

>>> x

10

>>> del x

>>> x

...

NameError: name 'x' is not defined

>>> s = 200

>>> t = s

>>> del s # s is gone

>>> t # t is still alive and kicking

200
25

Intermediate Summary
• Objects are stored at specific memory locations

• Variables are temporary names for memory addresses

• Memory address does not imply value, Value does not imply
memory address (except for “small” integers)

• Assignment of one variable to another merely creates another
reference to the object.

• Mutable objects, such as lists, allow changing their "inner
components" without changing the memory location of the
"containing" object.

• Python Tutor http://www.pythontutor.com/visualize.html#mode=edit.
26

http://www.pythontutor.com/visualize.html#mode=edit

Python's Mechanism for Passing Functions' Parameters

• Consider the following function, operating on two arguments:

def linear_combination(x,y):

y = 2*y

return x+y

• The formal parameters x and y are local, and their “life time"
is just during the execution of the function. They disappear
when the function is returned.

27

Python's Mechanism for Passing Functions' Parameters

• Now let us execute it in the following manner

>>> a, b = 3, 4 (simultaneous assignment)

>>> linear_combination(a,b)

11 (this is the correct value)

>>> a

3 (a has NOT changed)

>>> b

4 (b has NOT changed)

• The actual parameters, a and b are NOT affected.

• The assignment y=2*y makes the formal parameter y reference
another object with a different value inside the “body” of the
function. This change is kept local, inside the function’s execution
scope. The change is not visible by the calling environment.

• See Python Tutor visual simulation of this example
28

https://goo.gl/ixB8AC

Python's Mechanism for Passing Functions' Parameters

• Different programming languages have different
mechanisms for passing arguments when a function
is called (executed).

• In Python, the address of the actual parameter is
passed to the corresponding formal parameters in
the function.

• An assignment to the formal parameter within the
function body creates a new object, and causes the
formal parameter to address it.

• This change is not visible to the original caller's
environment.

29

Mutations inside Function

def modify_list(lst, i, val):

''' assign val to lst[i]

does not return any meaningful value '''

if i<len(lst):

lst[i] = val

return None

>>> L = [10, 11, 12, 13, 14]

>>> modify_list(L, 3, 1000)

>>> L

[10, 11, 12, 1000, 14]

• Here, the function execution mutates one of its parameters. Its
address in the function does not change, and it remains in the same
address as in the calling environment. So such mutation does affect
the original caller's environment. This phenomena is known as a
side effect.

• See Python Tutor visual simulation of this example30

https://goo.gl/TqNe3y

Mutations inside Function –
Another Example

def increment(lst):

for i in range(len(lst)):

lst[i] = lst[i]+1

>>> L = [0, 1, 2, 3]

>>> increment(L)

>>> L

[1, 2, 3, 4]

• In this case too, the formal argument (and local variable) lst
was mutated inside the body of the function. This mutation is

• visible back in the calling environment.

• Such change occurs only for mutable objects.

31

Assignments to formal Parameters

def nullify(lst):

lst = []

>>> L = [0, 1, 2, 3]

>>> nullify(L)

>>> L

[0, 1, 2, 3]

• Any change (like an assignment) to the formal argument, lst,
that changes the (identity of) the referenced object are not
visible in the calling environment, despite the fact that it is a
mutable object.

32

Assignments to formal Parameters

def nullify(lst):

print(hex(id(lst)))

lst = []

print(hex(id(lst)))

>>> L = [0, 1, 2, 3]

>>> hex(id(L))

0x1f608f0

>>> nullify(L)

0x1f608f0

0x11f4918 id of local var lst has changed

>>> L

[0, 1, 2, 3] (external) L has NOT changed!

>>> hex(id(L))

0x1f608f0
33

Global Variables

• Consider the following function:

def summation(n):

global s #declare using s as “shared resource”

s = sum(range(1,n+1))

no value returned

• Now let us execute it in the following manner:
>>> s = 0

>>> summation(100)

>>> s (s has changed!!)

5050

• In this example, the function declared that it treats s as a global
variable. This means that the name s inside the function
addresses a variable that is located in the "main" environment.
In particular, changes to it do propagate to the original caller of
the function.34

Summary: Information Flow and
Side Effects of functions

• To conclude, we saw three ways of passing information
from a function back to its original caller:

1. Using return value(s). This typically is the safest
and easiest to understand mechanism.

2. Mutating a mutable formal parameter. This often is
harder to understand and debug, and more error
prone.

3. Via changes to variables that are explicitly declared
global. Again, often harder to understand and
debug, and more error prone.

35

