
Extended Introduction to Computer Science
CS1001.py

Python Basics (cont.):
Lists, Functions, Memory Model

* Slides based on a course designed by Prof. Benny Chor

Module A
Lecture 3

Amir Rubinstein, Michal Kleinbort

School of Computer Science
Tel-Aviv University

Fall Semester 2023-24
http://tau-cs1001-py.wikidot.com

http://tau-cs1001-py.wikidot.com/

עדכונים קצרים

. מסיבות אבטחהpyמודל חסם את האפשרות להגיש קבצי •

. נעדכן בקרוב כיצד להגיש

2

Last Time

• Conditional statements including nested ones

• Type bool (Boolean)

– The values True and False

– logical operators (and, or, not)

– comparison operators (==, !=, <,…)

• Loops (while, for)

• Collections

str, range, list

3

This Lecture

• More on lists: list comprehension

• Functions

• Python’s memory model

4

Type list (reminder)

5

• str in Python is a sequence (ordered collection) of characters
• range in Python is a sequence (ordered collection) of integers
• list in Python is a sequence (ordered collection) of elements (of any type)

• The simplest way to create a list in Python is to enclose its
elements in square brackets:

>>> my_list = [2, 3005, 50, 746, 11111]

>>> my_list

[2, 3005, 50, 746, 11111]

Lists (and strings) are Indexable (reminder)

6

• Elements of lists and strings can be accessed via their
position, or index. This is called direct access
(aka “random access”)

• In this respect, lists are similar to arrays in other
programming languages (yet they differ in other aspects)

• Indices in Python start with 0, not with 1

>>> my_list = [2, 3005, 50, 746, 11111]

>>> my_list[0]

2

>>> my_list[4]

11111

>>> my_list[5]

Traceback (most recent call last):

File "<pyshell#7>", line 1, in <module>

my list[5]

IndexError: list index out of range

Iterating over Lists: Example

7

L = [1,2,3,4]

product = 1

for k in L:

product = product * k

print(product)

???

What would happen if we initialized product
to 0 instead of 1?

“same as”:
for i in range(len(L)):

product = product * L[i]

Ways to Generate Lists
1) Explicit: [1, 11, 21, 31]

2) Via loop:

3) Slicing an existing list L = [1,11,21,31,41,51,61]

L = L[0:4]

4) Direct casting of other sequences: L = list(range(1,40,10))

5) List comprehension: L = [i for i in range(40) if i%10==1]

8

L = []

for i in range(40):

if i%10 == 1:

L = L + [i]

List Comprehension

9

• In mathematics, concise notations are often used to express various
constructs, such as sequences or sets.

• For example, 𝑛2 1 ≤ 𝑛 < 10 ∧ 𝑛 𝑖𝑠 𝑜𝑑𝑑} is the set of squares of odd
numbers that are smaller than 10 (the numbers, not the squares). This
set is {1, 9, 25, 49, 81}

• Python supports a mechanism called list comprehension, which enables
syntactically concise ways to create lists.
For example:

>>> [n**2 for n in range(1,10) if n%2 == 1]

[1, 9, 25, 49, 81]

• Syntax: [expression for variable in collection if condition]

List Comprehension (cont.)

• List comprehension is a powerful tool, allowing the succinct,
powerful creation of new lists from other collections.

>>> staff = ["amir", "michal", "matan", "sapir", "dror", "shahar"]

>>> L = [st for st in staff if st[0]=="m"]

>>> L

["michal", "matan"]

>>> [st.replace("m","M") for st in staff if st[0]=="m"]

["Michal", "Matan"]

>>> print(staff)

["amir", "michal", "matan", "sapir", "dror", 'shahar']

(the original list is unchanged)

10

11

Comic Relief *

אלו לאורך הסמסטרהצעות לתמונות שיופיעו על שקפים לי אתכם לשלוח אני מזמין *

Functions

12

(Figures taken from Wikipedia and (the colorful one) from www.mathworks.com site.)

Function Terminology
• A function, in a mathematical sense, expresses the idea that one

quantity (the argument of the function, also known as the input)
completely determines another quantity (the value, or the
output).

• A function assigns exactly one value to each input.

• For each argument value 𝑥, the corresponding unique 𝑦 is called
the function value at 𝑥, the output of 𝑓 for an argument 𝑥, or the
image of 𝑥 under 𝑓. The image of 𝑥 may be written as 𝑓(𝑥).

13

Built-in Functions in Python
>>> res = sum([1,2,3])

>>> res

6

>>> res = sorted([3,1,2])

>>> res

[1,2,3]

>>> res = str.find("Same but different", "e")

>>> res

3

• All these and many other are already implemented for us and
ready to use. But what about designing new, user-defined
functions?

14

User-defined Functions

• We saw before a variant of the following piece of code for
computing XOR (exclusive OR):

>>> (a and (not b)) or ((not a) and b)

...

>>> (c and (not d)) or ((not c) and d)

...

• This is annoying and time consuming to write and rewrite the
same expression, only with different values each time.

• A function will come in handy: it will serve as a template

15

A Function for XOR

• Function definition:

• Function call:
>>> xor(True, True)

False

>>> xor(True, False)

True

>>> a = True

>>> b = False

>>> xor(a,b)

True

>>> xor(True, 3<4)

False

16

def xor(x, y):

return (x and (not y)) or ((not x) and y)

Functions Definition Syntax in Python

• The keyword def indicates the beginning of a function definition.

• The function name, in our case xor, follows.

• Then, in parenthesis, are the formal parameters (x, y in our case).

There could be zero or more formal parameters.

• This ends in a colon (:), indicating the beginning of the function
body.

• Following the colon, the body is, as usual, indented by a tab.

• The value following the return keyword is the returned value of
the function.

17

def xor(x, y):

return (x and (not y)) or ((not x) and y)

Formal parameters

Functions Call Syntax in Python
>>> a = True

>>> b = True

>>> xor(a, b)

False

>>> xor(a, False)

True

• A function is called by specifying its name, followed by actual
parameters, or arguments.

• The number of actual parameters is identical to the number
of formal parameters (there are some exceptions to this rule,
which will be pointed out at a later stage).

• The actual parameters are evaluated and passed to the body
of the function to be executed.

18

Actual parameters

Documenting Python's Functions

>>> help(xor)

Help on function xor in module __main__ :

xor(x,y)

computes xor of two Boolean variables, x and y

• Python provides a mechanism to document functions. This is text (possibly
multi line, unlike a comment) between triple quotes, called a docstring. (Three
single quotes or three double quotes.)

• Everything between the start and end of the triple quotes is part of a single
string, including carriage returns and other quote characters. You can use triple
quotes anywhere, but they are most often used when defining docstrings.

• When typing help with the function name (in parenthesis), the function's
docstring is printed.

(Some of these explanations are taken from "dive into Python", section 2.3)

19

def xor(x,y):

''' computes xor of two Boolean variables, x and y '''

return (x and (not y)) or ((not x) and y)

docstring

Functions with “no returned value”

def double(x):

""" prints twice the value of x """

print(2*x)

• Note that this function contains no return statement!

• Consequently, it returns the special value None.

• The same would happen if we wrote just return followed by
nothing, or even return None (both considered safer than omitting
the return statement)

21

No Returned Value (cont.)

• See what happens when assigning res = twice(…),

then asking the interpreter for the value of res.

>>> twice(15)

30

>>> res = twice(15)

30

>>> print(res)

None

>>> type(res)

<class 'NoneType'>

• Python’s print is another such example:

>>> res = print("hi")

hi

>>> res == None

True22

This is a result of the
print inside twice,
NOT a return value

Another Example: Palindromes
• A palindrome is a string w satisfying 𝑤 = 𝑤𝑅 (the string equals its reverse).

• “Madam I'm Adam"

• ”Dennis and Edna sinned"

• “Red rum, sir, is murder"

• “Able was I ere I saw Elba"

• “In girum imus nocte et consumimur igni" (Latin: “we go into the circle by night, we are
consumed by fire".)

• And yes, we have cheated a bit by ignoring spaces as well as lower/upper case.

• By the way, palindromes also appear in nature.
For example as DNA restriction sites -
short genomic strings over {A,C,T,G}
being cut by (naturally occurring) restriction enzymes.

23

From Wikipedia

Another Example: Palindromes

:מתוך ויקיפדיה•
ילד כותב בתוך דלי–

מהר בא לראותו נתן, נתנו תואר לאברהם–

כולם לא בשיאם רק רמאי שבא למלוך–

מועדשוב אשוב אליכם כי בא , דעו מאביכם כי לא בוש אבוש–

– According to Guinness World Records, the Finnish 19-letter
word saippuakivikauppias (a soapstone vendor), is the world's longest
palindromic word in everyday use

24

https://en.wikipedia.org/wiki/Guinness_World_Records

Identifying Palindromes

• What we want now is to write down a program that on input
word, a string, checks if word is a palindrome. If it is, the
program should return True. If not, it should return False.

• How should we go about writing such program?

• Plan:

– go over string characters from both ends “in parallel” and
compare them.

• As soon as an inequality is found, we conclude this is not a palindrome
and return False (skipping the function's remaining execution).

– If all checks found equality, we conclude this is a
palindrome.

25

Planning the Algorithm

Algorithm: Check if a given string is a palindrome

Input: word (type string) of size n

Output: True is palindrome, False otherwise

1. left = 0

2. right = n-1

3. while left < right:

3.1 if word[left] ≠ word[right]

3.1.1 terminate with False

3.2 left = left+1

3.3 right = right-1

4. terminate with True

26

Pseudo-code:
not executable, but
clear and does not

assume knowledge of
a specific programming

language

Implementing the Algorithm

27

def is_palindrome(word):

''' checks if word is a palindrome '''

n = len(word)

left = 0

right = n-1

while left < right:

if word[left] != word[right]: mismatch, not palindrome

return False

left = left+1

right = right-1

return True # matches all the way, a palindrome

Adding “Diagnostic” Printouts

• If you have difficulties following what is going on inside the
loop, it may be helpful to print intermediate results.

28

def is_palindrome(word):

''' checks if word is a palindrome '''

n = len(word)

left = 0

right = n-1

while left < right:

if word[left] != word[right]: mismatch, not palindrome

print("mismatch at indices", left, right)

return False

left = left+1

right = right-1

return True # matches all the way, a palindrome

The Three C’s*

29

• Correctness:
• is it correct?
• what are the special cases?

• Complexity:
• Is it efficient enough?
• can we improve?

• Clarity
• Can we write it simpler or “nicer” at no

significant cost?
• Is the code easy to modify / extend?

* Slide prepared by AR, inspired by a recent (2020) political interview in Israel

Tests for Checking Correctness
• Let us run the palindrome checking function on several inputs:

>>> is_palindrome("ab")

False

>>> is_palindrome("aa")

True

>>> is_palindrome("99899")

True

>>> is_palindrome("998 99")

False

>>> is_palindrome("x")

True

>>> is_palindrome("")

True

>>> is_palindrome(99899)

Traceback (most recent call last):

File "<pyshell#26>", line 1, in <module>

is_palindrome(98899)

File "C:\Users\amiramy\Documents\amiramy\IntroCS\introCSfall2013\Lec
3\palindrome.py", line 3, in is_palindrome

n = len(word)

TypeError: object of type 'int' has no len()

• When testing your program think of as many special cases as possible
• The above tests are far from providing a proof for the function’s correctness.
• In this case we can prove the function correctness using induction on the input size
• The field of software verification provides additional formal approaches for such proofs.
30

Complexity: Run-Time Analysis
• Suppose our input, word, is a string of length 𝑛. This means it is

composed of 𝑛 characters.

• How many iterations will the function take to execute on word?

• The answer to this depends not only on the length of word, but also to
a large extent on word itself:

– In the best case (from runtime point of view), word[0] and word[n-1] are
not equal. In this case, the execution will terminate after one comparison.

– In the worst case (again, from runtime point of view), word is a
palindrome. In this case, the execution will terminate after exactly 𝑛//2
comparisons (no matter if 𝑛 is odd or even).

– You may wonder what will the average case looks like. To answer it, we
should know something about the distribution of inputs. We will not
tackle this question right now.

31

Clarity:
Another Version for Identifying Palindromes

• This code is definitely slimmer and clearer than the
previous one. Also, it is almost trivially correct

• What about complexity? Is it also better performance
wise?

32

def is_palindrome2(word):

''' checks if word is a palindrome '''

return word == word[::-1] # does word = its reverse

Yet another Version for Identifying
Palindromes

• Iterate over every index i checking if word[i] ≠ word[(n-1)- i)]

• Now it’s easier with a for loop

33

def is_palindrome3(word):

''' checks if word is a palindrome '''

n = len(word)

for i in range(n):

if word[i] != word[n-1-i]: # mismatch, no palindrome

return False

return True # matches all the way, a palindrome

i n-1-i

Improving Worst-Case Efficiency

34

• As you may have figured out, the last version compares
matching positions twice! we could (and should) reduce the
number of iterations in the worst case by ~50%.

• Which of these is a correct solution, and the most efficient
one?

1) for i in range(n//2 - 1):

2) for i in range(n//2):

3) for i in range(n//2 + 1):

• Think first, then check…

35

Comic Relief *

אלו לאורך הסמסטרהצעות לתמונות שיופיעו על שקפים לי אתכם לשלוח אני מזמין *

36

Python’s Memory Model

• Will be done mostly interactively in class. Slides that cover this
are also available in the course site.

• The next slides summarize what we will see

Python’s Memory Model
• Objects are stored at specific memory locations

id(object1) == id(object2) if and only if object1 is object2

• Warning: For optimization reasons, two objects with non-overlapping lifetimes
may have the same id value. Furthermore, in two different executions, the same
object may be assigned different id. And obviously this is platform dependent.

• Variables are temporary names for memory addresses

• Memory address does not imply value, Value does not imply memory address
(except for “small” integers, and some strings, for optimization)

• Assignment of one variable to another merely creates another reference to the
object.

• Mutable objects, such as lists, allow changing their "inner components" without
changing the memory location of the "containing" object.

• Python Tutor http://www.pythontutor.com/visualize.html#mode=edit

37

http://www.pythontutor.com/visualize.html#mode=edit

Python's Mechanism for Passing Functions' Parameters

• Different programming languages have different mechanisms for passing
arguments when a function is called (executed).

• In Python, the address of the actual parameter is passed to the
corresponding formal parameters in the function.

• An assignment to the formal parameter within the function body creates a
new object, and causes the formal parameter to address it. This change is
not visible to the original caller's environment.

• However, when the function execution mutates one of its parameters, its
address in the function does not change, and it remains in the same
address as in the calling environment. So such mutation does affect the
original caller's environment. This phenomena is known as a side effect.

38

Information Flow and Side Effects of functions

• To conclude, we saw three ways of passing information
from a function back to its original caller:

1. Using return value(s). This typically is the safest
and easiest to understand mechanism.

2. Mutating a mutable formal parameter. This often is
harder to understand and debug, and more error
prone.

3. Via changes to variables that are explicitly declared
global. Again, often harder to understand and
debug, and more error prone.

39

Lecture 3: Highlights
• List comprehension

• Functions
– Definition, formal parameters

– Call, actual parameters

– return value

• “The three C’s”
– Correctness

– Complexity

– Clarity

• Python’s Memory Model
– Equality vs. identity

– Mutable vs. immutable types, assignment vs. mutation

– Function call mechanism (by address)

40

