Extended Introduction to Computer Science
CS1001.py

Module | Error Detection and Correction Codes

Instructors: Elhanan Borenstein, Michal Kleinbort
Teaching Assistants: Noam Parzanchevsky,
Asaf Cassel, Shaked Dovrat, Omri Porat

School of Computer Science
Tel-Aviv University

Spring Semester 2021
http://tau-cs1001-py.wikidot.com

" Slides based on a course designed by Prof. Benny Chor

http://tau-cs1001-py.wikidot.com/

Plan for the next lectures

Error detection and error correction codes
e Basic notions of codes

 The binary symmetric channel

e Hamming distance

* The geometry of codes - spheres around codewords
 Additional simple codes

* Repetition code

* Parity bit code
e Hamming (7, 4, 3) code

Communication

Two parties, traditionally names Alice and Bob, have access to a
communication line between them, and wish to exchange information.

This is a very general scenario. It could be two kids in class sending
notes, written on pieces of paper or (god forbid) text messages under
the teacher’s nose. Could be you and your friend talking using
“traditional” phones, cell phones, or Skype. Could be an unmanned
NASA satellite orbiting Mars and communicating with Houston using
radio frequencies. |t could be the hard drive in your laptop
communicating with the CPU over a bus, or your laptop running
code in the “cloud” via the “net”.

In each scenario, the parties employ communication channels with
different characteristics and requirements.

Three Basic Challenges in Communication

1. Reliable communication over unreliable (noisy) channels.

Three Basic Challenges in Communication

1. Reliable communication over unreliable (noisy) channels.
L e < Bab
Solved using error detection and correction codes.
2. Secure (confidential) communication over insecure channels.

Alice Bab
g

Solved using cryptography (encryption/ decryption).

3. Frugal (economical) communication over expensive channels.
Alice —%—« Bob
Solved using compression (and decompression).

We treat each requirement separately (in separate classes). Of
course, in a real scenario, solutions should be combined carefully so
the three challenges are efficiently addressed (e.g. usually
compression should be applied before encryption).

Today, we will discuss error detection and correction codes.

Reliable Communication over Unreliable Channels

“The first step to fixing an error is recognizing it.”
(Seneca the Younger: A Roman dramatist, Stoic philosopher,
and politician, 3 BC - 65 AD).

In this and the next class, we will look at some issues related to the
question of how can information be sent reliably over noisy, unreliable
communication channels.

It should be realized that these questions are not limited to phone
lines or satellite communication, but rather arise in daily contexts
such as ID or credit card numbers, ISBN codes (in books), audio
encoded on compact disks, barcodes and QR codes, etc., etc. This is
a rich and vivid topic, and here we will merely introduce it and
scratch its surface.

The role of ID Check Digits

e Add a digit to the number, computed from the other digits.

 The redundancy makes it possible to identify an incorrect
id (when given the full id, including the check digit).

The Check Digit of an Israeli ID Number, in Python

def control digit(ID):
""" compute the check digit in an Israeli ID number,
given as a string """

total = 0
for i in range(8):
val = int(ID[i]) # converts a char to 1ts numeric integer value
it i1 % 2 == 0:
total = total4wval
else:
if wal < b:
total 4= 2*val
else:

total += (2*val $ 10) + 1 # sum of digits in 2*val

total = total % 10
check digit= (10 - total) % 10 # the complement mod 10 of sum

return str(check digit)

The Check Digit of an Israeli ID Number, in Python

def dis_valid_IDC():
prompts for 1input from user
ID = input("pls type all 9 digits (left to right) of your ID: "

assert len(ID)==

if control_digit(ID[:-1]) == ID[-1]:
print ("Valid ID number")

else:
print ("ID number is incorrect")

Reminder: The input command prompts for a "string” input.

Detection and Correction of Errors

 The ID number code is capable of detecting any single digit
error.

* |tisalso capable of detecting all but one transpositions of
adjacent digits (there is one exception - find it!).

* |t cannot correct any single error or adjacent transposition.

* |t cannot detect many combinations of two-digit errors, or
transposition of non-adjacent digits.

Next, we will explore a card magic trick, capable not only of error
detection, but also of error correction.

10

The Card Magic Trick

The Card Magic Trick

(Source: Computer Science Unplugged.)

13

The 2D Card trick - explanation

After the 5 by 5 cards are placed, we add the 6th columnin a
way that ensures that each row has an even number of
colored cards.

The 6th row is added so that each column has an even
number of colored cards.

When a single card is flipped, there is exactly one row with an
odd number of colored cards, and exactly one column with an
odd number of colored cards.

So the flipped card is in the intersection of these row and
column.

14

Detection and Correction of Errors

The 2D cards magic code can correct any single bit error.

The 2D cards code can detect any combinations of two or
three bits errors.

It cannot detect some combinations of four-bit errors.
Can it detect transposition errors?

Claude Shannon, the Father of Information Theory

Claude Elwood Shannon (April 30, 1916—February 24,
2001) was an American mathematician, electronic
engineer, and cryptographer known as “the father of
information theory’.

Shannon is famous for having founded information
theory with one landmark paper published in 1948.
But he is also credited with founding both digital
computer and digital circuit design theory in 1937,
when, as a 21 year old master's student at MIT,
he wrote a thesis demonstrating that electrical
application of Boolean algebra could construct and
resolve any logical, numerical relationship.

It has been claimed that this was the most important master’s thesis of all
time. Shannon contributed to the field of cryptanalysis during World War Il
and afterwards, including basic work on code breaking.

For two months early in 1943, Shannon came into contact with the leading

British cryptanalyst and mathematician Alan Turing. Turing had been
posted to Washington to work with the US Navy's cryptanalytic service.

15 (text from Wikipedia)

The Shannon-Weaver Model of Communication (1949)

Reoelwa
Iloss c

Send
Message

Source of figure is somewhat unexpected.

16

The Shannon-Weaver Model of Communication (1949)

“We may have knowledge of the past but cannot control it; We may
control the future but cannot know it.".
Claude Shannon, 1959

Send
Message

Encode & -,
/
Recelve - mc(ws
Message I—
&,

Sender

For simplicity, let every original message be a fixed length block of
bits. The channel is noisy, so a subset of sent bits may get altered
(reversed) along the way, with non-zero probability.

17

The Shannon-Weaver Model of Communication, cont.

Recelve
Message

Send
Decode ~Ligin
/

Encode

Send
Message
Encode & -,
/

Recelve cade

m @
Fl -

£ :
-

Sender

Sender passes original message through an encoder, which typically produces a
longer signal by concatenating so called parity check bits (which may, of
course, get altered themselves).

The (possibly altered) signal reaches the recipient’s decoder, which translates it
to a message, whose length equals the length of the original message.

Goal: Prob(original message equals decoded message) =~ 1 while adding as few
I108its as possible

Detecting vs. Correcting Errors

The receiver gets the signal (with zero or more bits flipped) and applies the
decoding function.

Error detecting code:

* The receiver identifies errors in the transmission and asks for resending it.
The receiver can state that there is an error in the signal received but does
not know where.

Error correcting code:

* The receiver restores the original message, even if there were errors in the
transmission.

There may be cases where some errors can be corrected, and others can only
be detected.

19

The Binary Symmetric Channel (BSC)

A convenient model for the noisy communication channel:

Prob(received bit=1 | sent bit=0) =p
Prob(received bit=0 | sent bit=1)=p

| —p
Error probability (of any single bit) satisfies p < 1/2 0

P
P

e

Errors on different subsets of bits are mutually independent.
Bits neither appear nor disappear.

Model is over simplified, yet very useful in practice.

20

21

Implication of the models

The signal sent is a string of bits of a fixed size n.

The signal received has the same length n as the signal sent.
An error means that one or more bits were flipped
 0Owassent but 1 received

* or 1 wassent but O received.

A single error occurs with probability n-p - (1 — p)*~1

Two errors occur with probability (’;) p?-(1—p) 2

In general, we expect roughly pn of the bits to flip (note that 0 < p < %)

The Hamming Distance (defined next) between the signal sent and the one
received will model the number of errors that occurred.

23

Hamming Distance

Richard W. Hamming (1915 —1998)

 Letx,y € X" be two length n words over alphabet X. The Hamming
distance between x, y is the number of coordinates where they differ.

* The Hamming distance satisfies the three usual requirements from a
distance function

1.
2.
3.

Foreveryx, A(x,x) =0
Forevery x,y, A(x,y) = A(y,x) = 0, with equality iff x = y
Forevery x,v,z, A(x,y)+ A(y,z) = A(x,z) (triangle inequality)

where x,y,z € L™ (same length)

 Examples:

1.

2.
3.
4,

A(00101,00101) =0

A(00101,11010) = 5 (maximum possible for length 5 vectors)
A(00101,00101000) is undefined (unequal lengths)

A(BEN, RAN) = 2

Hamming Distance

def hamming_distance(sl, s2):
assert len(sl) == len(s2)
return sum(s1[i] '= s2[i] for i in range(len(sl)))

>>> hamming_distance((1,2,3),(3,4,5))

3
>>> hamming_distance ("00101","00101")
0
>>> hamming_distance("00101","11010")
5

>>> hamming_distance ("00101","001010")
Traceback (most recent call last):
File "<pyshell#17>", line 1, in <module>
hamming_distance ("00101","001010")
File "/Users/benny/Dropbox/InttroCS2012/Code/intro23/Hamming.py",
assert len(sl) == len(s2)
AssertionError

24

25

Definitions (1)

A one-to-one Encoding function C:{0,1}* — {0,1}"* from
k to n bits (k < n)
A message m € {0,1}* mapped to a codeword x = C(m)
e {0,1}"
The set of codewords, often called the code, is:

Im(C) = {y € {0,1}" | 3x € {0,1}*,C(x) = y}

It holds that:
. Im(C) c {0,1}"
« |Im(C)| = 2*

Throughout this lecture we will use C and Im(C)
interchangeably to denote the code

Definitions (2)

e A one-to-one Encoding function C: {0,1}¢ — {0,1}"
from k to n bits (k < n)

e A message m € {0,1}* mapped to a codeword
x =C(m) € {0,1}"

* The set of codewords, often called the code, is Im(C)

2™ possible binary
messages of length n

C:{0,1}* - {0,1}"

2k possible
binary

messages of

length k

2% possible
codewords

Im(C)

26

27

Definitions (3)

* A Decoding function D: {0,1}"* — {0,1}"
from n to k bits (k < n)

* Obviously: D(C(m)) =m

28

Definitions (4)

* Sender sends the codeword C(m)

* Receiver gets a noisy codeword C(m)
* Possibly C(m) # C(m)
* Hopefully D(C’(?{)) =m

Closest Codeword Decoding - Definitions

* Let A(y, z) denote the Hamming distance between vy, z

* Given a code C and an element t € {0,1}", the closest
codeword decoding function D maps t to a message
m € {0,1}¢ that minimizes A(t, C (%)) xe(o,13k

If there is more than one codeword C(m) that attains
the minimum distance, then the decoding function D
announces an error

29

Closest Codeword Decoding: Example

In the card magic code, suppose we receive the string over
{0,13}° x {0, 1}° on the left. There is a single codeword at
distance 1 from this string, depicted to the right.

30

N LI
N LI
HEEN | N
N LI
[[| N
I HREENN

There is no codeword at distance 2 from this string (why?), and
many that are at distance 3. Some of those are shown below.

N L]
NN [N
N HEN | N
NN [N
N HEN | N
I I CHIC e

Closest Codeword Decoding: Example 2

In the card magic code, suppose we receive the following string
over {0, 1}° x {0, 1}°:

N
N
NN (N
N
| O
I

There is no codeword at distance 1 from this string (why?).
There are exactly two codewords that are at distance 2 from
this string. They are shown below. In such situation, closest
codeword decoding announces an error.

N N
NN [LI]
N [
NN [O
N [
I I I

31

Closest Codeword is Maximum >
Likelihood Decoding | ‘)

Observation: For the binary symmetric channel (p < %),

closest codeword decoding of t, if defined, outputs the
message m that maximizes the likelihood of producing ¢,
namely

Vx = m € {0,1}*:
Pr[t received |C(x) sent] < Pr|t received | C(m) sent].

Proof: If C(m) has distance s and C (x) has distance s + r (for some
positive r) then Pr[t received |C (m) sent] = p5(1 — p)™*~%, while
Pr[t received |C(x) sent] = pS*t7 (1 — p)?= (7).

Sincep < 1/2 we obtain the claim. =

32

Minimum Hamming Distance of Codes: Definition

e The minimum distance d of a code is the minimal
Hamming distance between pairs of codewords:

d=A(C)= min {A(y,x)}

y=xelm(C)

* In words: The minimum distance d of a code C is the
minimal Hamming distance over all pairs of
codewords in Im(C)

* d is an important parameter that determines how
many errors may be detected and/or corrected.

 Note that to evaluate the performance of a code we need
to consider its worst-case performance.

34

Error detection vs. correction

* Given areception C(m) which contains
errors

* Error detection: detecting that C(m) cannot be
a codeword

* Error correction: returning the unique closest
codeword to C(m)

* Error detection is often easier than error
correction

35

36

Hamming Distances in the 2D Card Code

The minimum distance d of the 2D card code is 4

So, words whose Hamming distance from a codeword is 1, are
at distance 3 from another codeword

When such a word is received, it is assumed the correct
codeword is the one at distance 1 (higher probability than the
one at distance 3)

So, the 2D cards code can correct any single error

Two errors cannot be corrected, because there are (at least)
two equal probability codewords (both at Hamming distance 2)

If we only want to detect errors, the 2D cards code can detect
up to three-bits errors

An Important Geometric Property

Proposition:
Suppose d = A(C') is the minimum distance of a code, .

Then this code is capable of detecting up to d — 1 errors, and
correcting up to |(d — 1)/2] errors.

These words are
three umts apat.

Thetr unit spheres
do not overlap.

(figure from course EE 387, by John Gill, Stanford University, 2010.)

37

An Important Geometric Property, cont.

Proposition:
Suppose d = A(C) is the minimum distance of a code C.
Then this code is capable of detectinguptod — 1 errors.

Proof: Let C(m) € {0,1}" be a codeword. Suppose it experienced h
errors, where 1 < h < d — 1. In other words, C(m) was sent, and

C’(ﬁ) was received, where the Hamming distance between C(m)
and C(m) is h.

The minimum distance of this code is d. Therefore, CT(Tn/) cannot be a
codeword. The receiving side can detect this fact.

38

An Important Geometric Property, cont.

Proposition:
Suppose d = A(C) is the minimum distance of a code C.

Then this code is capable of correctingup to |(d — 1)/2| errors.

Demonstrating with d = 3:

C(m) C(m) C gll)

If C(m) was sent but h < |(d — 1)/2] errors have occurred, then the reception C(m) is
not a codeword and € (m) is the closest codeword to C (m).
If not, there are two codewords C(m), C(m') such that:
A(C(m),C(m)) = hand A(C(m"),C(m)) <h —
By the triangle inequality A(C(m),C(m")) <2-h<d—-—1<d — -contradiction.

39

Equivalent Definitions

Let y € {0,1}"

The ball of radius 7 around vy is the set
B(y,r) ={z € {0,1}" |A(y,z) <71}

42

Equivalent Definitions

Let y € {0,1}"

The ball of radius 7 around vy is the set
B(y,r) ={z € {0,1}" |A(y,z) <71}

44

Equivalent Definitions

Let y € {0,1}"
The ball of radius 7 around vy is the set
B(y,r) = {z € {0,1)" |A(y,2) <7}
A code is capable of detecting 7 errors if
for every codeword y € Im(C), B(y,r)NNIm(C) = {y}

45

Equivalent Definitions

Let y € {0,1}"
The ball of radius 7 around vy is the set
B(y,r) = {z € {0,1)" |A(y,2) <7}
A code is capable of detecting 7 errors if
for every codeword y € Im(C), B(y,r)NNIm(C) = {y}

46

Equivalent Definitions

Let y € {0,1}"
The ball of radius 7 around vy is the set
B(y,r) = {z € (0,1} |A(y,2) <1}
A code C is capable of detecting 7 errors if
for every codeword y € Im(C), B(y,r)NNIm(C) = {y}
A code C is capable of correcting r errors if
for every codewords y = x € Im(C), B(y,r)NB(x,r) =0

47

Equivalent Definitions

Let y € {0,1}"
The ball of radius 7 around vy is the set
B(y,r) = {z € (0,1} |A(y,2) <1}
A code C is capable of detecting r errors iff
for every codeword y € Im(C), B(y,r)NNIm(C) = {y}
A code C is capable of correcting r errors iff
for every codewords y = x € Im(C), B(y,r)NB(x,r) =0

Do these definitions make sense to you?

49

Minimum Distance of the ID Code

« k =8 (length of message)
* n =9 (length of codeword)
 The minimum distance of the ID code isd = 2.

* Therefore, ID code is capable of detecting any
single digit error.

* But a single digit error cannot be corrected,
because there are two codewords at Hamming
distance 1 from it.

 There are combinations of two digit errors it
cannot detect.

50

Minimum Distance of the “Card Magic” Code

e k=25
e n =236
e The minimum distance of the ID code is d = 4.

DDDDDE L]

L]

LCICC]
.
NN
NN

[
[

(IO

* This code is capable of detecting < 3 errors
* This code is capable of correcting 1 error

51

Minimum Distance of Codes

We will now see 2 additional simple codes:
 Repetition code (the case of 3 copies), where d = 3
e Parity (1-dimensional) check code, where d = 2

And one more sophisticated code:
e The Hamming (7,4,3) code, where d = 3

53

Repetition Code

Original message of k bits

t is the repetition parameter
 Each bitis repeated t times

Each codeword is of lengthn =k - ¢

54

Repetition Code

An example withk =2,t =3

In the following code, the original messages are two bits long. The
encoder repeats each original bit, two more times.

original
2 bits

00
01
10
11

This code can correct any single error.

A

encoded
6 bits

000000
000111
111000
111111

For example, suppose the

decoder recieves 001000. The single flipped bit can only be 001000,
leading to the codeword 000000 and original message 00.

Remark: Of course, the channel is not aware of a difference between
“regular” (original) bits and “blue” (duplicated) bits.

Hamming Distances in the Repetition Code with

95

repetition parametert = 3

The minimum distacnce of the Repetition Code is 3.

So the Repetition Code is capable of correcting any single digit
error.

But some combinations of two digit errors can also be corrected:
when one of the errors is in the first 3 bits, and one in the last 3
bits.

Other combinations of two digit errors cannot be corrected -
they look just like a single error!

So it's best to treat each block of 3 bits separately.

What is the minimum distance of a Repetition code for a single
bit source (3 bit codewords)?

56

Decoding algorithm for Repetition Codes

So will decode blocks of 3 bits.

received signal decoded message
3 bits 1 bit
000, 100,010.001 — 0
111,011,101,110 — 1

Decoding rule: If the received 3 bit signal is at Hamming distance 0 or
1 from one of the two codewords, the decoded message is the original
message encoded by this codeword. This covers all possible cases.

So if the decoder recieves 001100. |t can identify the codeword as
000000 and the original message is 00.

Geometric Interpretation of the Repetition Code
withk =1, t = 3

k=1 (length of message)
n=3 (length of codeword)
d=3

Guaranteed: detect 2 errors, correct 1

110 111

010 011

100 101

000 0oL

- Codewords are underlined.

99

Decoding the Repetition Code in Python

The input to the decoding function is a reception and the repetition
parameter t of the code

repetition decode (reception, t):
res = ""
i range (0, len(reception), t):
block = receptionf[i:i1 + t]
Select the majority per block
block.count ("1") > block.count ("0") :

res += "1"
res += "QO"
res

. t—1
Assuming that at most {T‘ errors have occurred,
repetition decode returns the correct original message.

61

Parity Check Code

* QOriginal message of k bits
 Add a parity bit

Each codeword is of lengthn = k + 1

Parity Check Codes

In the following code, the original messages are two bits long. The
encoder xors the two original bit (i.e. adds them modulo 2). The
resulting bit is appended to the original message.

original encoded
2 bits 3 bits
00 — 000
01T — 011
10 — 101
11 — 110

62

Parity Check Codes: Encoding

original encoded
2 bits 3 bits
00 — 000
01T — 011
10 — 101
11 — 110

This code can detect any single error. But it cannot correct a single
error. For example, suppose the decoder receives 001. The single
flipped bit could be either 001 (encoded signal 000) or 001 (encoded
signal 011) or 001 (encoded signal 101) .

Decoding Parity Check Codes

received signal decoded message
3 bits 2 bits
000 — 00
001 — ‘“error’
010 — ‘“error”
011 —> 01
100 —— “error”
101 — 10
110 — 11
111 — “error’

* Decoding rule: If the received signal is one of the four codewords, decoded
message is the original message encoded by this codeword. Otherwise,
return error.

* In this simple example too, a full decoding dictionary is possible. But how

could we avoid it?
64

Geometric Interpretation of Parity Bit Code

k=2 (length of message)
n=3 (length of codeword)
d=2 (in fact all HD are 2 here)

Can detect 1 error, correct 0

111

B

010 011

100 101

0oL

65 Codewords are underlined.

66

Repetition Code and Parity Check

The repetition code we saw is hardly ever used — it expands
messages threefold.

The parity check code is in use, but it cannot correct even one
error.

Why can't the parity check code correct even a single error?
What is the minimal distance of the parity check code?

Next, we will see a more effective code, named the
Hamming (7,4,3) code.
* nis much smaller than that of the repetition code

67

The Hamming (7, 4, 3) Code

Let C:{0,1}* — {0,1}" be an encoding function and let d be
the minimum distance of the corresponding code.

We say that this code is an (n, k, d) code.
We will now see the Hamming (7,4,3) code.

Hamming code is actually a family of codes. There are
Hamming codes with different parameters, such as (15, 11, 3).

69

Let’s start with an example

Benny wants to send the message
msg =“0011" to Rani (length 4)

The codeword that Benny sends after
encoding the message is x =“1000011"

(length 7)

* How is x computed?
1:(0+0+)%2 = (1+0+0+1)%2=0
O0=(0+1+1)%2 = (0+0+1+1)%2=0

O+1+1)%2 = (0+0+1+1)%2=0

70

Let’s start with an example

Benny wants to send the message msg =“0011"
to Rani (length 4)

The codeword that Benny sends after encoding
the message is x =“1000011" (length 7)

Suppose that a single error has occurred (the 6th
bit was flipped). Rani received the following
transmission: y = “1000001”

Could Rani detect that the transmission he
received contains an error? Or perhaps even
correct the error? Yes, as d = 3.

71

A decoding algorithm

We will now describe a closest-codeword
decoding algorithm for Hamming (7,4,3)
assuming that a single error has occurred.

72

Let’s start with an example

Rani received the noisy y = “1000001”

Rani computes:
b; = (1+0+0+1)%2 =0
b, = (0+0+0+1)%2 =1
b; = (0+0+0+1)%2 =1

i = (b3byby), = (110), = (6)19

Decode:
. Correct:

[+ 0 = thereis an error in the ith bit— flip it.

correct
1000001 —— 100001

. Extract the message: 001

73

Another example

Benny wants to send the message
msg =“0011" to Rani (length 4)

The codeword that Benny sends after
encoding the message is x =“1000011"
(length 7)

Suppose that a single error has occurred (the
2nd bit was flipped). Rani received the
following transmission: y = “1100011”

74

Another example

Rani received the noisy y = “1100011”

Rani computes:
b; = (1+0+0+1)%2=0
b, = (1+0+1+1)%2 =1
b; = (0+40+1+1)%2 =0

i = (b3byby), = (010), = (2)19

Decode:
. Correct:

[# 0 = thereis an error in the ith bit— flip it.

correct
1100011 — 100001

. Extract the message: 001

The Hamming (7, 4, 3) Code

The Hamming encoder gets an original message consisting of 4 bits,
and produces a 7 bit long codeword. For reasons to be clarified soon,
we will number the bits in the original message in a rather unusual
manner. For (x3, 15, 16.27) € Zf} = {0, 1}4,

(r3, x5, w6, 207) —> (21, 70, T3, T4, T5, Tg, T7) .

where &, 9, 14 are parity check bits, computed (modulo 2) as
following:

ry = T3+ T35+ A7
ry = I3+ Tg T+ Ty
Ty = I5+ Te T I7

75

76

The Hamming (7, 4, 3) Code

(modified from Wikipedia image)

Hamming Encoding in Python

This Hamming code has 2* = 16 codewords. This is small enough to
enable us to describe the encoding procedure using a table lookup,
which in Python typically means a dictionary.

But as the size of the code grows, table lookup becomes less
attractive.

def hamming_encode (x3,x5,x6,x7):
x1l= (x3+x5+x7) % 2
x2= (x3+x6+x7) ¥ 2
xd= (x5+x6+x7) ¥ 2
return (x1,x2,x3,x4,x5,x6,x7)
>>> hamming_encode(0,0,0,0)
(o, o, 0, 0, 0, 0, 0)
>>> hamming_encode(1,0,0,0)
(¢, 12, 1, 0, 0, 0, 0)
>>> hamming_encode(0,1,0,0)
(¢, 0, 0, 1, 1, 0, 0)
>>> hamming_encode(0,0,1,0)
(0, 1, 0, 1, 0, 1, 0)

Geometry of Hamming (7, 4, 3) Code

Let Cy be the set of 2* = 16 codewords in the Hamming code. A
simple computation shows that Cy; equals

).
).
).
).

By inspection, the Hamming distance between two codewords is > 3.
Therefore the unit spheres around different codewords do not overlap.

These words are
three units apart.

Thetr it spheres
do not overlap.

(figure from course EE 387, by John Gill, Stanford University, 2010.)

78

Closest Codeword Decoding of Hamming (7, 4, 3)

Thesze wonds are
flwee wnts apart

e
e ."\-\.
A

l’f::r s {}w <) {)

W)
W
Y o f N

| e
\""H—:J T I'\" _.-

W O

-, -

Thear vt zpheres
do ot envverdap

This implies that if we transmit a codeword in {0.1}7 and the
channel changes at most one bit in the transmission (corresponding
to a single error), the received word is at distance 1 from the original
codeword, and its distance from any other codeword is > 2.

Thus, decoding the received message by taking the closest codeword
to it, guarantees to produce the original message, provided at most
one error occurred.

Questions
1. How do we find the closest codeword (for our Hamming code).

2. What happens if more than a single error occurs?

79

Decoding Hamming (7, 4, 3) Code

k =4 is small enough that we can still decode exhaustively, by a
table lookup (using dict in Python). But there is a much cooler way to decode
this specific code.

Let (V1, V2, V3, Va, Vs, Ve, V7) be the 7 bit signal received by the

decoder. Assume that at most one error occurred by the channel.

This means that the sent message, (x4, X5, X3, X4, X5, X6, X7) differs from the
received signal in at most one location (bit).

Let the bits by, by, b3 be defined (modulo 2) as follows:

by =y1+y3+ys+y;
by =y, +y3+Yyst+y;
bs =ys+yYs+ye+ys

Writing the three bits (from left to right) as b;b, b, we get the binary

representation of an integer ¢ in the range {0,1, ..., 7}.
80

Decoding Hamming (7, 4, 3) Code
Let the bits by, b, b3 be defined (modulo 2) as follows:

by =y, +y;+ys+y;
b, =y,+ys+Yst+y;
bs =ys+ys+yet+y7

Writing the three bits (from left to right) as b; b, b, we get the binary
representation of an integer £ in the range {0,1, ..., 7}.

* Interpret £ = 0 as “no error” and return bits 3,5,6,7 of the received
signal.

* Interpret other values as “error in position £ ", and flip y,. Return bits
3,5,6,7 of the result.

81

Decoding Hamming (7, 4, 3) Code: Why Does It Work?

Recall the bits by, bo, b3 be defined (modulo 2) as following

by = w1 +uys+uys+uyr
by = yo+uys+uys+uyr
bs = wys+ys+ vy + yr

» |f there was no error (for all 7, x; = y;) then from the definition
of x1.x9. x4, it follows that b3boby is zero, and we correct
nothing.

» |f there is an error in one of the parity check bits, say x9 # 1.
Then only the corresponding bit is non zero (b = 1 in this

case). The position ¢ (010 — 2 in this case) points to the bit to
be corrected.

» |If there is an error in one of the original message bits, say
rs # 5. Then the bits of the binary representation of this
location will be non zero (h; = by = 1 in this case). The position

(101 — 5 in this case) points to the bit to be corrected.
82

Decoding Hamming (7, 4, 3) Code: Binary Representation

Recall the Hamming encoding

ry = I3 TIT5T+ Iy
r9 = I3+ Tg+ Ty
ry4 = I5T T+ Iy

The locations of the parity bits a1, x9. 24, are all powers of two.

» | corresponds to indices 3,5,7 having a 1 in the first (rightmost)
position of their binary representations 011,101,111.

» 5 corresponds to indices 3,6,7 having a 1 in the second
(middle) position of their binary representations 011,110,111.

» 4 corresponds to indices 5,6,7 having a 1 in the last (leftmost)
position of their binary representations 101,110,111.

83

84

Decoding Hamming (7, 4, 3) Code: Python

hamming decode (recep) :

We start indexing from 1 so we add a dummy bit

recep = [0] + list(recep)

Compute parity bits

bl = (recep[l] + recep[3] + recep[5] + recepl[7]) % 2
b2 = (recep[2] + recep[3] + recepl[6] + recepl[7]) % 2
b3 = (recep[4] + recep[5] + recepl[6] + recepl[7]) % 2
Interpret as int
err = int(str(b3)+str(b2)+str(bl), 2)
Flip error bit, if err == 0, no effect
receplerr] = 1 - receplerr]
Return original message bits
[recep[1] i [3, 5, 6, 7]]
>>> hamming encode(0,0,1,1)
(l/ O/ O/ OI O, ll l)
>>> hamming decode((1, 0, 0, 0, 0, 1, 1))
[OI OI ll l]
>>> hamming decode((1, 0, 0, 0, 0, O, 1)) #contains an error
(0, 0, 1, 1]

Relation between k,n,d

* Given k (length of message), we wish to:
 Maximize d — codewords are “far apart”
* Minimize n — codewords are “short”

* Intuitively, contradictory goals
* Provably as well

Why minn, max d is impossible

Write down all 2% codewords C(x)

They each differ in at least d coordinates
Erase the first d — 1 coordinates

All words still differ (why?)

New words have lengthn — (d — 1)
At most 2~ (@=1 sych words
2k < 2n=(d=1) (Why?)
In other words:
k<n—(d-1)
U
d<n—-k+1

Balls in {0,1}"™ and their Volume

88

Recall that the ball of radius r around y € {0,1}"is the set
B(y,r) ={z € {0,1}" |A(y,z) < 1}

The volume of this ball is defined as the number of elements of {0,1}" it
contains.

For r = 1: The number of elements from {0,1}" at distance exactly 1 from
y is n. Obviously, y is also in the ball B(y, 1). Thus, the volume of the unit

ball B(y,1) in{0,1}"isn + 1.
For any natural r = 1:

There are (Z) elements at distance exactly h from y.

Therefore, the volume of B(y,r) is ZZ:O(Z)-

92

Volume Bound for (n, k, 3) Codes

Let C' be a (n. k. 3) code.

This implies that balls of radius 1 around codewords are disjoint.
Each such ball contains exactly n + 1 points (why?).

There are 2" such balls (one around each codeword).

Since the balls are disjoint, no point in {0, 1}" appears twice in
their union.

Thus 28 - (n +1) < 2™

The repetition code we saw is a (6. 2.3) code.
And indeed, 2% (6 + 1) = 28 < 20 = 64.

Volume Bound for General (n, k, d) Codes

o Let C' bea (n. k.d) code. Then 2k. S LD/l () < on
e This is called the volume, sphere packing, or Hamming, bound.

e Example: The card magic code is a (36,25,4) code. Indeed,

' (a-1/2)
-) = 2%5(1 +36) = 1.241.513. 984
> () =20+ 30) = 1,201,513,

< 230 — 68.719.476.736 .

o Proof idea: Spheres at radius |(d — 1)/2] around the 2%
codewords are all disjoint. Thus the "volume™ of their union

cannot be greater than the “volume” of the whole space, which
s 2.

93

94

(n,k,d) Codes: Rate and Relative
Distance

The rate of an (n, k,d) code is k /n. It measures the ratio between the
number of information bits, &k, and the transmitted bits, n.

The relative distance of the code is d /n.

» : .2 1

* The repetition code we saw is a (6,2,3) code. Its rate is c= 3 Its
: . .3 1

relative distance is P

* The parity check code is a (3,2,2) code. Its rate and relative
distance are both %

e The card magic code is a (36,25,4) code. Its rate is 2—2, and its

. . . 4 1
relative distance is — = —.
36 9

95

Goal in Code Design

Large rate, the closer to 1 the better (smaller number
of additional bits, and thus smaller communication
overhead).

Large relative distance (related to lower error in
decoding).

Efficient encoding.
Efficient decoding (computationally).

Codes Used in RAID (for reference only)

RAID (an acronym for redundant array of independent disks) is a storage
technology that combines multiple disk drive components into a logical unit.
Data is distributed across the drives in one of several ways called "RAID
levels", depending on what level of redundancy and performance (via parallel
communication) is required (text from Wikipedia).

RAID architectures are also concerned with errors, of course. A relatively
frequent error is that one out of n 4+ 1 disks crashes. Notice that in such a
case we know which is the crashed disk. In our notation, this corresponds to a
signal with n + 1 bits, one of which is missing. An easy generalization of our
parity check code can be employed to recover the crashed bit (disk).

Remark: Different error protection schemes are used in various RAID
architectures.

96

