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Plan for the next lectures

Error detection and error correction codes

• Basic notions of codes

• The binary symmetric channel

• Hamming distance

• The geometry of codes - spheres around codewords

• Additional simple codes

• Repetition code

• Parity bit code

• Hamming (7, 4, 3) code
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Communication
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Three Basic Challenges in Communication
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Three Basic Challenges in Communication
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Reliable Communication over Unreliable Channels
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The role of ID Check Digits

• Add a digit to the number, computed from the other digits.

• The redundancy makes it possible to identify an incorrect 
id (when given the full id, including the check digit).
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The Check Digit of an Israeli ID Number, in Python
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The Check Digit of an Israeli ID Number, in Python
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Detection and Correction of Errors
• The ID number code is capable of detecting any single digit

error.

• It is also capable of detecting all but one transpositions of

adjacent digits (there is one exception - find it!).

• It cannot correct any single error or adjacent transposition.

• It cannot detect many combinations of two-digit errors, or

transposition of non-adjacent digits.

Next, we will explore a card magic trick, capable not only of error

detection, but also of error correction.
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The Card Magic Trick
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The Card Magic Trick
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(Source: Computer Science Unplugged.)



The 2D Card trick - explanation

• After the 5 by 5 cards are placed, we add the 6th column in a 
way that ensures that each row has an even number of 
colored cards.

• The 6th row is added so that each column has an even 
number of colored cards.

• When a single card is flipped, there is exactly one row with an 
odd number of colored cards, and exactly one column with an 
odd number of colored cards.

• So the flipped card is in the intersection of these row and 
column.
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Detection and Correction of Errors

• The 2D cards magic code can correct any single bit error.

• The 2D cards code can detect any combinations of two or 
three bits errors.

• It cannot detect some combinations of four-bit errors.

• Can it detect transposition errors?
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Claude Shannon, the Father of Information Theory

(text from Wikipedia)
15



The Shannon-Weaver Model of Communication (1949)

Source of figure is somewhat unexpected.

16



The Shannon-Weaver Model of Communication (1949)

For simplicity, let every original message be a fixed length block of 
bits. The channel is noisy, so a subset of sent bits may get altered 
(reversed) along the way, with non-zero probability.
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“We may have knowledge of the past but cannot control it; We may 
control the future but cannot know it.".

Claude Shannon, 1959 



The Shannon-Weaver Model of Communication, cont.

Sender passes original message through an encoder, which typically produces a 
longer signal by concatenating so called parity check bits (which may, of 
course, get altered themselves).

The (possibly altered) signal reaches the recipient’s decoder, which translates it 
to a message, whose length equals the length of the original message.

Goal: Prob(original message equals decoded message) ≈ 1 while adding as few 
bits as possible
18



Detecting vs. Correcting Errors
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The receiver gets the signal (with zero or more bits flipped) and applies the 
decoding function.

Error detecting code:

• The receiver identifies errors in the transmission and asks for resending it. 
The receiver can state that there is an error in the signal received but does 
not know where.

Error correcting code:

• The receiver restores the original message, even if there were errors in the 
transmission.

There may be cases where some errors can be corrected, and others can only 
be detected.



The Binary Symmetric Channel (BSC)

A convenient model for the noisy communication channel:

Prob( received bit=1 | sent bit=0 ) = p
Prob( received bit=0 | sent bit=1 ) = p

Error probability (of any single bit) satisfies p < 1/2

Errors on different subsets of bits are mutually independent.
Bits neither appear nor disappear.

Model is over simplified, yet very useful in practice.
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Implication of the models
• The signal sent is a string of bits of a fixed size 𝑛.

• The signal received has the same length 𝑛 as the signal sent.

• An error means that one or more bits were flipped

• 0 was sent but 1 received

• or 1 was sent but 0 received.

• A single error occurs with probability 𝑛 ⋅ 𝑝 ⋅ 1 − 𝑝 𝑛−1

• Two errors occur with probability 𝑛
2
⋅ 𝑝2 ⋅ 1 − 𝑝 𝑛−2

• In general, we expect roughly 𝑝𝑛 of the bits to flip (note that 0 ≤ 𝑝 <
1

2
)

• The Hamming Distance (defined next) between the signal sent and the one 
received will model the number of errors that occurred.
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Hamming Distance

• Let 𝑥, 𝑦 ∈ Σ𝑛 be two length 𝑛 words over alphabet Σ. The Hamming 
distance between 𝑥, 𝑦 is the number of coordinates where they differ. 

• The Hamming distance satisfies the three usual requirements from a 
distance function

1. For every 𝑥, Δ 𝑥, 𝑥 = 0

2. For every 𝑥, 𝑦, Δ 𝑥, 𝑦 = Δ 𝑦, 𝑥 ≥ 0, with equality iff 𝑥 = 𝑦

3. For every 𝑥, 𝑦, 𝑧, Δ 𝑥, 𝑦 + Δ 𝑦, 𝑧 ≥ Δ 𝑥, 𝑧 (triangle inequality)

where 𝑥, 𝑦, 𝑧 ∈ Σ𝑛 (same length)

• Examples:
1. Δ 00101, 00101 = 0

2. Δ 00101, 11010 = 5 (maximum possible for length 5 vectors)

3. Δ 00101, 00101000 is undefined (unequal lengths)

4. Δ 𝐵𝐸𝑁,𝑅𝐴𝑁 = 2
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Hamming Distance



Definitions (1)

• A one-to-one Encoding function 𝐶: 0,1 𝑘 → 0,1 𝑛 from 
𝑘 to 𝑛 bits (𝑘 < 𝑛)

• A message 𝑚 ∈ 0,1 𝑘 mapped to a codeword 𝑥 = 𝐶 𝑚
∈ 0,1 𝑛

• The set of codewords, often called the code, is:   
𝐼𝑚 𝐶 = 𝑦 ∈ 0,1 𝑛 | ∃𝑥 ∈ 0,1 𝑘 , 𝐶 𝑥 = 𝑦

It holds that:
• 𝐼𝑚 𝐶 ⊂ 0,1 𝑛

• 𝐼𝑚(𝐶) = 2𝑘

• Throughout this lecture we will use 𝐶 and 𝐼𝑚(𝐶)
interchangeably to denote the code
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Definitions (2)
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2𝑘 possible 
binary 

messages of 
length 𝑘

2𝑛 possible binary 
messages of length 𝑛

2𝑘 possible 
codewords

𝐼𝑚(𝐶)

𝐶: 0,1 𝑘 → 0,1 𝑛

• A one-to-one Encoding function 𝐶: 0,1 𝑘 → 0,1 𝑛

from 𝑘 to 𝑛 bits (𝑘 < 𝑛)
• A message 𝑚 ∈ 0,1 𝑘 mapped to a codeword

𝑥 = 𝐶 𝑚 ∈ 0,1 𝑛

• The set of codewords, often called the code, is 𝐼𝑚(𝐶)



Definitions (3)

• A Decoding function 𝐷: 0,1 𝑛 → 0,1 𝑘

from 𝑛 to 𝑘 bits (𝑘 < 𝑛)

• Obviously: 𝐷 𝐶 𝑚 = 𝑚
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Definitions (4)

• Sender sends the codeword 𝐶(𝑚)

• Receiver gets a noisy codeword ෫𝐶(𝑚)

• Possibly ෫𝐶(𝑚) ≠ 𝐶(𝑚)

• Hopefully 𝐷 ෫𝐶 𝑚 = 𝑚

28



Closest Codeword Decoding - Definitions
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• Let Δ(𝑦, 𝑧) denote the Hamming distance between 𝑦, 𝑧

• Given a code 𝐶 and an element 𝑡 ∈ 0,1 𝑛, the closest 
codeword decoding function 𝐷 maps 𝑡 to a message 
𝑚 ∈ 0,1 𝑘 that minimizes Δ 𝑡, 𝐶(𝑥) 𝑥∈ 0,1 𝑘

• If there is more than one codeword 𝐶 𝑚 that attains 
the minimum distance, then the decoding function 𝐷
announces an error



Closest Codeword Decoding: Example
In the card magic code, suppose we receive the string over 
0, 1 6 × 0, 1 6 on the left. There is a single codeword at 

distance 1 from this string, depicted to the right.

30

There is no codeword at distance 2 from this string (why?), and

many that are at distance 3. Some of those are shown below.



Closest Codeword Decoding: Example 2
In the card magic code, suppose we receive the following string 
over 0, 1 6 × 0, 1 6:

31

There is no codeword at distance 1 from this string (why?). 
There are exactly two codewords that are at distance 2 from 
this string. They are shown below. In such situation, closest 
codeword decoding announces an error.



Closest Codeword is Maximum 
Likelihood Decoding

32

Observation: For the binary symmetric channel (𝑝 <
1

2
),

closest codeword decoding of 𝑡, if defined, outputs the 
message 𝑚 that maximizes the likelihood of producing 𝑡, 
namely

∀𝑥 ≠ 𝑚 ∈ 0,1 𝑘:
Pr 𝑡 received 𝐶 𝑥 sent] < Pr 𝑡 received 𝐶 𝑚 sent] .

Proof: If 𝐶(𝑚) has distance 𝑠 and 𝐶 𝑥 has distance s + 𝑟 (for some 
positive 𝑟) then Pr 𝑡 received 𝐶(𝑚) sent] = 𝑝𝑠 1 − 𝑝 𝑛−𝑠, while 
Pr 𝑡 received 𝐶 𝑥 sent] = 𝑝𝑠+𝑟 1 − 𝑝 𝑛−(𝑠+𝑟).

Since 𝑝 < 1/2 we obtain the claim.  ∎



Minimum Hamming Distance of Codes: Definition

• The minimum distance 𝑑 of a code is the minimal 
Hamming distance between pairs of codewords:  

𝑑 = Δ 𝐶 = min
𝑦≠𝑥∈𝐼𝑚(𝐶)

{Δ(𝑦, 𝑥)}

• In words: The minimum distance 𝑑 of a code 𝐶 is the 
minimal Hamming distance over all pairs of 
codewords in 𝐼𝑚 𝐶

• 𝑑 is an important parameter that determines how 
many errors may be detected and/or corrected.
• Note that to evaluate the performance of a code we need 

to consider its worst-case performance.
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Error detection vs. correction

• Given a reception ෫𝐶(𝑚) which contains 
errors

• Error detection: detecting that ෫𝐶(𝑚) cannot be 
a codeword

• Error correction: returning the unique closest 

codeword to ෫𝐶(𝑚)

• Error detection is often easier than error 
correction

35



Hamming Distances in the 2D Card Code

• The minimum distance 𝑑 of the 2D card code is 4

• So, words whose Hamming distance from a codeword is 1, are 
at distance 3 from another codeword

• When such a word is received, it is assumed the correct 
codeword is the one at distance 1 (higher probability than the 
one at distance 3)

• So, the 2D cards code can correct any single error

• Two errors cannot be corrected, because there are (at least) 
two equal probability codewords (both at Hamming distance 2)

• If we only want to detect errors, the 2D cards code can detect
up to three-bits errors
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An Important Geometric Property
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An Important Geometric Property, cont.
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Proposition:
Suppose 𝑑 = Δ(𝐶) is the minimum distance of a code 𝐶.
Then this code is capable of detecting up to 𝑑 − 1 errors.

Proof: Let 𝐶 𝑚 ∈ 0,1 𝑛 be a codeword. Suppose it experienced ℎ
errors, where 1 ≤ ℎ ≤ 𝑑 − 1. In other words, 𝐶(𝑚) was sent, and 
෫𝐶(𝑚) was received, where the Hamming distance between 𝐶 𝑚

and ෫𝐶(𝑚) is ℎ.

The minimum distance of this code is 𝑑. Therefore, ෫𝐶(𝑚) cannot be a 
codeword. The receiving side can detect this fact.



An Important Geometric Property, cont.
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Proposition:
Suppose 𝑑 = Δ(𝐶) is the minimum distance of a code 𝐶.
Then this code is capable of correcting up to (𝑑 − 1)/2 errors.

𝐶(𝑚) 𝐶(𝑚′)෫𝐶(𝑚)
1

If 𝐶(𝑚) was sent but 𝒉 ≤ (𝒅 − 𝟏)/𝟐 errors have occurred, then the reception ෫𝐶(𝑚) is 

not a codeword and 𝐶 𝑚 is the closest codeword to ෫𝐶(𝑚). 
If not, there are two codewords 𝐶 𝑚 , 𝐶 𝑚′ such that: 

Δ 𝐶 𝑚 , ෫𝐶 𝑚 = 𝒉 and Δ 𝐶 𝑚′ , ෫𝐶 𝑚 ≤ 𝒉 ⟶

By the triangle inequality Δ 𝐶 𝑚 , 𝐶(𝑚′) ≤ 𝟐 ⋅ 𝒉 ≤ 𝒅 − 𝟏 < 𝒅 ⟶ contradiction.

Demonstrating with 𝒅 = 𝟑:



Equivalent Definitions

• Let 𝑦 ∈ 0,1 𝑛

• The ball of radius 𝑟 around 𝑦 is the set 
𝐵 𝑦, 𝑟 = 𝑧 ∈ 0,1 𝑛 Δ 𝑦, 𝑧 ≤ 𝑟}

42

𝑦 𝑧
1

𝑥

𝑟 = 1𝐵(𝑦, 1)



Equivalent Definitions
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𝑦 𝑧 𝑥

𝑟 = 2𝐵(𝑦, 2)

• Let 𝑦 ∈ 0,1 𝑛

• The ball of radius 𝑟 around 𝑦 is the set 
𝐵 𝑦, 𝑟 = 𝑧 ∈ 0,1 𝑛 Δ 𝑦, 𝑧 ≤ 𝑟}



Equivalent Definitions

• Let 𝑦 ∈ 0,1 𝑛

• The ball of radius 𝑟 around 𝑦 is the set 
𝐵 𝑦, 𝑟 = 𝑧 ∈ 0,1 𝑛 Δ 𝑦, 𝑧 ≤ 𝑟}

• A code is capable of detecting 𝑟 errors if 

for every codeword 𝑦 ∈ 𝐼𝑚 𝐶 , 𝐵 𝑦, 𝑟 ⋂𝐼𝑚 𝐶 = {𝑦}

44

𝑦

𝑟
𝐵(𝑦, 𝑟)



Equivalent Definitions

• Let 𝑦 ∈ 0,1 𝑛

• The ball of radius 𝑟 around 𝑦 is the set 
𝐵 𝑦, 𝑟 = 𝑧 ∈ 0,1 𝑛 Δ 𝑦, 𝑧 ≤ 𝑟}

• A code is capable of detecting 𝑟 errors if 

for every codeword 𝑦 ∈ 𝐼𝑚 𝐶 , 𝐵 𝑦, 𝑟 ⋂𝐼𝑚 𝐶 = {𝑦}
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𝑦

𝑟
𝐵(𝑥, 𝑟)

𝑥



Equivalent Definitions

• Let 𝑦 ∈ 0,1 𝑛

• The ball of radius 𝑟 around 𝑦 is the set 
𝐵 𝑦, 𝑟 = 𝑧 ∈ 0,1 𝑛 Δ 𝑦, 𝑧 ≤ 𝑟}

• A code 𝐶 is capable of detecting 𝑟 errors if 

for every codeword 𝑦 ∈ 𝐼𝑚 𝐶 , 𝐵 𝑦, 𝑟 ⋂𝐼𝑚 𝐶 = {𝑦}

• A code 𝐶 is capable of correcting 𝑟 errors if 

for every codewords 𝑦 ≠ 𝑥 ∈ 𝐼𝑚 𝐶 , 𝐵 𝑦, 𝑟 ⋂𝐵(𝑥, 𝑟) = ∅

46

𝑦 𝑧1

𝑥

𝑟𝐵(𝑦, 𝑟) 𝑟𝐵(𝑥, 𝑟)



Equivalent Definitions

• Let 𝑦 ∈ 0,1 𝑛

• The ball of radius 𝑟 around 𝑦 is the set 
𝐵 𝑦, 𝑟 = 𝑧 ∈ 0,1 𝑛 Δ 𝑦, 𝑧 ≤ 𝑟}

• A code 𝐶 is capable of detecting 𝑟 errors iff

for every codeword 𝑦 ∈ 𝐼𝑚 𝐶 , 𝐵 𝑦, 𝑟 ⋂𝐼𝑚 𝐶 = {𝑦}

• A code 𝐶 is capable of correcting 𝑟 errors iff

for every codewords 𝑦 ≠ 𝑥 ∈ 𝐼𝑚 𝐶 , 𝐵 𝑦, 𝑟 ⋂𝐵(𝑥, 𝑟) = ∅

Do these definitions make sense to you?
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Minimum Distance of the ID Code

49

• 𝑘 = 8 (length of message)
• 𝑛 = 9 (length of codeword)
• The minimum distance of the ID code is 𝑑 = 2.

• Therefore, ID code is capable of detecting any 
single digit error.

• But a single digit error cannot be corrected, 
because there are two codewords at Hamming 
distance 1 from it.

• There are combinations of two digit errors it 
cannot detect.



Minimum Distance of the “Card Magic” Code
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• 𝑘 = 25
• 𝑛 = 36
• The minimum distance of the ID code is 𝑑 = 4.

• This code is capable of detecting ≤ 3 errors
• This code is capable of correcting 1 error



Minimum Distance of Codes
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We will now see 2 additional simple codes:
• Repetition code (the case of 3 copies), where 𝑑 = 3
• Parity (1-dimensional) check code, where 𝑑 = 2

And one more sophisticated code:
• The Hamming (7,4,3) code, where 𝑑 = 3



Repetition Code

• Original message of 𝑘 bits

• 𝑡 is the repetition parameter

• Each bit is repeated 𝑡 times

• Each codeword is of length 𝑛 = 𝑘 ⋅ 𝑡
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Repetition Code

54

An example with 𝑘 = 2, 𝑡 = 3 :



Hamming Distances in the Repetition Code with 
repetition parameter 𝑡 = 3
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Decoding algorithm for Repetition Codes
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Geometric Interpretation of the Repetition Code 
with 𝑘 = 1, 𝑡 = 3
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Decoding the Repetition Code in Python

The input to the decoding function is a reception and the repetition 
parameter t of the code

Assuming that at most
𝑡−1

2
errors have occurred, 

repetition_decode returns the correct original message.

59

def repetition_decode(reception, t):

res = ""

for i in range(0, len(reception), t):

block = reception[i:i + t]

# Select the majority per block

if block.count("1") > block.count("0"):

res += "1"

else:

res += "0"

return res



Parity Check Code

• Original message of 𝑘 bits

• Add a parity bit

• Each codeword is of length 𝑛 = 𝑘 + 1
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Parity Check Codes
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Parity Check Codes: Encoding
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Decoding Parity Check Codes

64

• Decoding rule: If the received signal is one of the four codewords, decoded 
message is the original message encoded by this codeword. Otherwise, 
return error.

• In this simple example too, a full decoding dictionary is possible. But how 
could we avoid it?



Geometric Interpretation of Parity Bit Code
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Repetition Code and Parity Check
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• The repetition code we saw is hardly ever used − it expands 
messages threefold.

• The parity check code is in use, but it cannot correct even one 
error.

• Why can't the parity check code correct even a single error?
• What is the minimal distance of the parity check code?

• Next, we will see a more effective code, named the      
Hamming (7,4,3) code.
• 𝑛 is much smaller than that of the repetition code 



The Hamming (7, 4, 3) Code

Let 𝐶: 0,1 𝑘 → 0,1 𝑛 be an encoding function and let 𝑑 be 
the minimum distance of the corresponding code.

We say that this code is an 𝑛, 𝑘, 𝑑 code. 

We will now see the Hamming (7,4,3) code.

Hamming code is actually a family of codes. There are 
Hamming codes with different parameters, such as (15, 11, 3).

67



Let’s start with an example

• Benny wants to send the message              
𝑚𝑠𝑔 =“0011” to Rani (length 4)

• The codeword that Benny sends after 
encoding the message is 𝑥 =“1000011”
(length 7)

• How is 𝑥 computed?

• 1 = (0 + 0 + 1) % 2

• 0 = (0 + 1 + 1) % 2

• 0 = (0 + 1 + 1) % 2

69

⇒ (1+ 0 + 0 + 1) % 2 = 0

⇒ (0+ 0 +1 + 1) % 2 = 0

⇒ (0+ 0 +1 + 1) % 2 = 0



Let’s start with an example

• Benny wants to send the message 𝑚𝑠𝑔 =“0011” 
to Rani (length 4)

• The codeword that Benny sends after encoding 
the message is 𝑥 =“1000011” (length 7)

• Suppose that a single error has occurred (the 6th 
bit was flipped). Rani received the following 
transmission: 𝑦 = “1000001”

• Could Rani detect that the transmission he 
received contains an error? Or perhaps even 
correct the error? Yes, as 𝑑 = 3.

70



A decoding algorithm

We will now describe a closest-codeword 
decoding algorithm for Hamming (7,4,3) 
assuming that a single error has occurred.
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Let’s start with an example

• Rani received the noisy 𝑦 = “1000001”
• Rani computes:

𝑏1 = (1+0+0+1)%2 = 0
𝑏2 = 0+0+0+1 %2 = 1
𝑏3 = 0+0+0+1 %2 = 1

𝑖 = 𝑏3𝑏2𝑏1 2 = 110 2 = (6)10

Decode:
• Correct:

𝑖 ≠ 0 ⇒ there is an error in the 𝑖th bit→ flip it.

1000001
correct

1000011

• Extract the message:  0011
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Another example

• Benny wants to send the message 

𝑚𝑠𝑔 =“0011” to Rani (length 4)

• The codeword that Benny sends after 
encoding the message is 𝑥 =“1000011” 
(length 7)

• Suppose that a single error has occurred (the 
2nd bit was flipped). Rani received the 
following transmission: 𝑦 = “1100011”
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Another example

• Rani received the noisy 𝑦 = “1100011”
• Rani computes:

𝑏1 = (1+0+0+1)%2 = 0
𝑏2 = 1+0+1+1 %2 = 1
𝑏3 = 0+0+1+1 %2 = 0

𝑖 = 𝑏3𝑏2𝑏1 2 = 010 2 = (2)10

Decode:
• Correct:

𝑖 ≠ 0 ⇒ there is an error in the 𝑖th bit→ flip it.

1100011
correct

1000011

• Extract the message:  0011
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The Hamming (7, 4, 3) Code
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The Hamming (7, 4, 3) Code
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Hamming Encoding in Python
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Geometry of Hamming (7, 4, 3) Code
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Closest Codeword Decoding of Hamming (7, 4, 3)
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Decoding Hamming (7, 4, 3) Code

80

k = 4 is small enough that we can still decode exhaustively, by a
table lookup (using dict in Python). But there is a much cooler way to decode 
this specific code.

Let (𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7) be the 7 bit signal received by the
decoder. Assume that at most one error occurred by the channel.
This means that the sent message, (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7) differs from the 
received signal in at most one location (bit).

Let the bits 𝑏1, 𝑏2, 𝑏3 be defined (modulo 2) as follows:

𝑏1 = 𝑦1 + 𝑦3 + 𝑦5 + 𝑦7
𝑏2 = 𝑦2 + 𝑦3 + 𝑦6 + 𝑦7
𝑏3 = 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7

Writing the three bits (from left to right) as 𝑏3𝑏2𝑏1, we get the binary 
representation of an integer ℓ in the range 0,1, … , 7 .



Decoding Hamming (7, 4, 3) Code
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Let the bits 𝑏1, 𝑏2, 𝑏3 be defined (modulo 2) as follows:

𝑏1 = 𝑦1 + 𝑦3 + 𝑦5 + 𝑦7
𝑏2 = 𝑦2 + 𝑦3 + 𝑦6 + 𝑦7
𝑏3 = 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7

Writing the three bits (from left to right) as 𝑏3𝑏2𝑏1, we get the binary 
representation of an integer ℓ in the range 0,1, … , 7 .

• Interpret ℓ = 0 as “no error” and return bits 3,5,6,7 of the received 
signal.

• Interpret other values as “error in position ℓ ", and flip 𝑦ℓ. Return bits 
3,5,6,7 of the result.



Decoding Hamming (7, 4, 3) Code: Why Does It Work?

82



Decoding Hamming (7, 4, 3) Code: Binary Representation
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Decoding Hamming (7, 4, 3) Code: Python
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def hamming_decode(recep):

# We start indexing from 1 so we add a dummy bit

recep = [0] + list(recep)

# Compute parity bits

b1 = (recep[1] + recep[3] + recep[5] + recep[7]) % 2

b2 = (recep[2] + recep[3] + recep[6] + recep[7]) % 2

b3 = (recep[4] + recep[5] + recep[6] + recep[7]) % 2

# Interpret as int

err = int(str(b3)+str(b2)+str(b1), 2)

# Flip error bit, if err == 0, no effect

recep[err] = 1 - recep[err]

# Return original message bits

return [recep[i] for i in [3, 5, 6, 7]]

>>> hamming_encode(0,0,1,1)

(1, 0, 0, 0, 0, 1, 1)

>>> hamming_decode((1, 0, 0, 0, 0, 1, 1))

[0, 0, 1, 1]

>>> hamming_decode((1, 0, 0, 0, 0, 0, 1))  #contains an error

[0, 0, 1, 1]



Relation between 𝑘,𝑛,𝑑

• Given 𝑘 (length of message), we wish to:

• Maximize 𝑑 – codewords are “far apart”

• Minimize 𝑛 – codewords are “short”

• Intuitively, contradictory goals

• Provably as well



Why min 𝑛, max𝑑 is impossible

• Write down all 2𝑘 codewords 𝐶(𝑥)

• They each differ in at least 𝑑 coordinates

• Erase the first 𝑑 − 1 coordinates

• All words still differ (why?)

• New words have length 𝑛 − (𝑑 − 1)

• At most 2𝑛−(𝑑−1) such words

• 2𝑘 ≤ 2𝑛−(𝑑−1) (why?)

• In other words: 
𝑘 ≤ 𝑛 − 𝑑 − 1

⇓
𝒅 ≤ 𝒏 − 𝒌 + 𝟏

𝑐1

𝑐2

…

…

𝑐2𝑘

𝒅 − 𝟏

𝒏 − (𝒅 − 𝟏)



Balls in 0,1 𝑛 and their Volume

Recall that the ball of radius 𝑟 around 𝑦 ∈ 0,1 𝑛is the set 
𝐵 𝑦, 𝑟 = 𝑧 ∈ 0,1 𝑛 Δ 𝑦, 𝑧 ≤ 𝑟}

The volume of this ball is defined as the number of elements of 0,1 𝑛 it 
contains.

For 𝑟 = 1: The number of elements from 0,1 𝑛 at distance exactly 1 from 
𝑦 is 𝑛. Obviously, 𝑦 is also in the ball 𝐵(𝑦, 1).  Thus, the volume of the unit 
ball 𝐵 𝑦, 1 in 0,1 𝑛 is 𝑛 + 1.

For  any natural  𝑟 ≥ 1:

There are 
𝑛
ℎ

elements at distance exactly ℎ from 𝑦.

Therefore, the volume of 𝐵(𝑦, 𝑟) is σℎ=0
𝑟 𝑛

ℎ
.
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Volume Bound for (𝑛, 𝑘, 3) Codes
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Volume Bound for General (𝑛, 𝑘, 𝑑) Codes
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𝑘



(𝑛,𝑘,𝑑) Codes: Rate and Relative 
Distance

The rate of an 𝑛, 𝑘, 𝑑 code is 𝑘/𝑛. It measures the ratio between the 
number of information bits, 𝑘, and the transmitted bits, 𝑛.

The relative distance of the code is 𝑑/𝑛.

• The repetition code we saw is a (6,2,3) code. Its rate is 
2

6
=

1

3
. Its 

relative distance is 
3

6
=

1

2
.

• The parity check code is a 3,2,2 code. Its rate and relative 

distance are both 
2

3
.

• The card magic code is a (36,25,4) code. Its rate is 
25

36
, and its 

relative distance is 
4

36
=

1

9
.
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Goal in Code Design
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• Large rate, the closer to 1 the better (smaller number 
of additional bits, and thus smaller communication 
overhead).

• Large relative distance (related to lower error in 
decoding).

• Efficient encoding.

• Efficient decoding (computationally).



Codes Used in RAID (for reference only)

RAID (an acronym for redundant array of independent disks) is a storage 
technology that combines multiple disk drive components into a logical unit. 
Data is distributed across the drives in one of several ways called "RAID 
levels", depending on what level of redundancy and performance (via parallel 
communication) is required (text from Wikipedia).

RAID architectures are also concerned with errors, of course. A relatively 
frequent error is that one out of 𝑛 + 1 disks crashes. Notice that in such a 
case we know which is the crashed disk. In our notation, this corresponds to a 
signal with 𝑛 + 1 bits, one of which is missing. An easy generalization of our 
parity check code can be employed to recover the crashed bit (disk).

Remark: Different error protection schemes are used in various RAID

architectures.
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