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Pitfalls of Using Recursion 
• Every modern programming language, including, of course, 

Python, supports recursion as one of the built-in control 
mechanism. 

 

• However, recursion is not the only control mechanism in 
Python, and surely is not the one employed most often. 

 

• Furthermore, as we will now see, cases where "naïve 
recursion" is highly convenient for writing code may lead to 
highly inefficient run times. For this reason, we will also 
introduce a technique to improve recursive algorithms. We 
note, however, that in some cases, eliminating recursion 
altogether requires very crude means. 
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Computing Fibonacci Numbers 
• We coded Fibonacci numbers, using recursion, as following: 

 
def fibonacci(n): 

    if n<=1: 

       return 1 

    else: 

       return fibonacci(n-1) + fibonacci(n-2) 

 

• But surely nothing could go wrong with such simple and 
elegant code... To investigate this, let us explore the running 
time: 
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Computing Fibonacci Numbers 
• But surely nothing could go wrong with such simple and 

elegant code... To investigate this, let us explore the running 
time: 

 

>>> fibonacci(30) 

1346269 

>>> elapsed("fibonacci(30)") 

0.31555 

>>> elapsed("fibonacci(35)") 

3.4169379999999996 

>>> elapsed("fibonacci(40)") 

38.288004 

>>> elapsed("fibonacci(45)") 

432.662887 # over 7 minutes !! 
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Recursion Trees (reminder) 
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Recursion Trees 
Typically the order of calls from each node is from left to right. 
 
Two special types of nodes in the tree are the root of the tree (a 
node without a "parent"), and a leaf (a node without children). 
There is exactly one root, but there can be many leaves. 
 
Recursion trees enable a better understanding of the recursive 
process, complexity analyses, and may help designing recursive 
solutions. Two important notions in this context are: 
 
• Time complexity: the total amount of time spent in the whole 

tree. 
• Recursion depth: the maximal length of a path from root to leaf. 

This is also the maximal number of recursive calls that are 
simultaneously open. 
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Recursion Trees 

• Recursion depth – distance from root to deepest leaf 
• corresponds to maximal number of recursive calls that are open simultaneously 

• too many such calls may cause memory overload (will discuss this soon) 
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• depth of this tree = 5 

• for input n the depth is n-1 = O(n) 



Recursion Trees 

• Time complexity – overall number of operations in the whole tree 

8 



Exact Number of Calls 

• We can easily modify the code, so it also counts the number of 
function invocations, using a global variable, count. 

 

def count_fibonacci(n): 

    """ counting no. of function invocations """ 

    global count 

    count += 1 

    if n<2: 

        return 1 

    return count_fibonacci(n-1) + count_fibonacci(n-2) 
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Count(n) vs. Fibonacci(n) 
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Intuition for Improving Efficiency 
• Instead of computing from scratch, we will introduce variables 

fib[0], fib[1], fib[2],.... The value of each such variable will be 
computed just once. Rather than recomputing it, we will fetch 
the value from memory, when needed. 

 

• The technique of storing values instead of re-computing them 
has different names in different contexts: It is known as 
memorization, a term coined by Donald Michie in 1968. In 
programming languages like Lisp (of which Scheme is a 
variant), where recursion is used heavily, there are programs to 
do this optimization automatically, at run time. These are often 
termed memoization. 

 

• In other contexts, this technique is often used as part of 
dynamic programming. 11 



Fibonacci: Recursive Code with Memoization 

• We will use a dictionary - an indexed data structure that can 
grow dynamically. This dictionary, which we name fib_dict, will 
contain the Fibonacci numbers already computed. 

• We initialize the dictionary with fib_dict = {0:1, 1:1}. 

• fibonacci2 is an envelope function, which calls the recursive fib2.  
 

def fibonacci2(n): 

    """ Envelope function for Fibonacci, 

        employing memoization in a dictionary """ 

    fib_dict = {0:1, 1:1} # initial dictionary 

    return fib2(n, fib_dict) 

 

def fib2(n, fib_dict): 

    if n not in fib_dict: 

        res = fib2(n-1, fib_dict) + fib2(n-2, fib_dict) 

        fib_dict[n] = res 

    return fib_dict[n] 
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Fibonacci: Recursive Code with Memoization 

• This small change implies a huge performance difference: 
 

>>> elapsed("fibonacci(35)") 

8.245295905878606 

>>> elapsed("fibonacci2(35)") 

9.053997947143898e-05 

 

>>> elapsed("fibonacci(40)") 

92.6057921749773 

>>> elapsed("fibonacci2(40)") 

9.909589798251517e-05 

 

>>> elapsed("fibonacci(45)") 

1031.308921394449 # 17 minutes !! 

>>> elapsed("fibonacci2(45)") 

0.00011015042046658152 
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Recursive Code with Memoization 
• To understand how the dictionary is filled with values, let's call the 

recursive function directly: 
 

>>> fib_dict = {0:1, 1:1} 

>>> fib2(5, fib_dict) 

8 

>>> fib_dict 

{0: 1, 1: 1, 2: 2, 3: 3, 4: 5, 5: 8} 

 

>>> fib2(7, fib_dict) 

21 

>>> fib_dict 

{0: 1, 1: 1, 2: 2, 3: 3, 4: 5, 5: 8, 6: 13, 7: 21} 

 

• Here, computations from the first call were re-used in the second 
one, because the dictionary was not reset between calls.  
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Recursive Code with Memoization 
• Here, computations from the first call were re-used in the second 

one, because the dictionary was not re-set between calls.  
 

 

>>> fib_dict = {0:1, 1:1} 

 

>>> elapsed("fib2(500, fib_dict)") 

0.0004189785626902008 

 

>>> elapsed("fib2(500, fib_dict)") 

3.811481833038144e-05 

 

>>> elapsed("fib2(1000, fib_dict)") 

0.0003692017477066045 

 

>>> elapsed("fib2(1200, fib_dict)") 

0.0001581480521757328 
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No recursion at all here! 
Dictionary contains result. 

Recursion depth is only 200 

Recursion depth is only 500 



Recursion Tree of Code with Memoization 

• How does the recursion tree for the code with memoization look like?  

• What is its depth?  

• What is the time complexity of the function? 

 

 

• In class, on board. 

16 



Pushing Recursion Depth to the Limit 
>>> fibonacci2(990) 

571829406815633979529643697006273045106845980748991112071

673038743714031497887739023091610769764627307772654802298

784361803421747114571265690519449915873452164193174293407

940201977897716937097604164288130909 

 

>>> fibonacci2(1000) 

Traceback (most recent call last): 

# removed most of the error message 

fib dict[n] = fibonacci2(n-1)+fibonacci2(n-2) 

RuntimeError: maximum recursion depth exceeded 

 

 

• What the $#*& is going on? 

• fib2(1000) worked perfectly well in the last slide, with no initialization 
of the dictionary between calls! 
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Python Recursion Depth 
• While recursion provides a powerful and very convenient means to 

designing and writing code, this convenience is not for free.  

• Each time we call a function, Python (and every other programming 
language) adds another "frame"  (memory environment) to the 
current one. This entails allocation of memory for local variables, 
function parameters, etc. 

 

• Nested recursive calls, like the one we have in fibonacci2, build a 
deeper and deeper stack of such frames. 

 

• Most programming languages' implementations limit this recursion 
depth. Specifically, Python has a nominal default limit of 1,000 on 
recursion depth.  However, the user (you, that is), can modify the limit 
(within reason, of course). 
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Changing Python Recursion Depth 

• You can import the Python sys library, find out what the limit is, 
and also change it. 

 

>>> import sys 

>>> sys.getrecursionlimit() # find recursion depth limit 

1000 

>>> sys.setrecursionlimit(20000) # change limit to 20,000 

>>> fibonacci2(3000) 

664390460366960072280217847866028384244163512452783259405579765542621214 

1612192573964498109829998203911322268028094651324463493319944094349260190 

4534272374918853031699467847355132063510109961938297318162258568733693978 

4373527897555489486841726131733814340129175622450421605101025897173235990 

66277020375643878651753054710112374884914025268612010403264702514559895667 

590213501056690978312495943646982555831428970135422715178460286571078062467 

510705656982282054284666032181383889627581975328137149180900441221912485637 

512169481172872421366781457732661852147835766185901896731335484017840319755 

9969056510791709859144173304364898001 # hurray 
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Reversed Order of Calls 

• As you have probably understood, Python evaluates expressions 
from left to right (except for when otherwise dictated by 
precedence of operators). 

• Suppose we changed the order of calls inside fibonacci2: first we 
call n-2, then n-1. 

 

def fib2_reverse(n, fib_dict): 

    if n not in fib_dict: 

        res = fib2(n-2, fib_dict) + fib2(n-1, fib_dict) 

        fib_dict[n] = res 

    return fib_dict[n] 

 

• How does the recursion tree look like now? Recursion depth? 
Time complexity?  
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Reversed Order of Calls 

• Memory-wise, We can now compute fibonacci up to values 
(about) twice as large.  
 

>>> fib2_reverse(1986, {0:1,1:1}) 

81087922640094891418438740061559113055500676604497900843229294588

75569537308860911899252119166354954493335130042702349145374612849

01292446908897559765539197111540858390529008105883495154321496723

65998031325651706942563589503431080829039101895997609300340467230

24910327809329969494380635150615996952163310835253392238539077212

07136862784763667719397907746593484736384718791709517060157571485

7409104419953597287615733 
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Fibonacci Numbers: Iterative (Non Recursive) Solution 
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Iterative Fibonacci Solution: Python Code 

def fibonacci3(n): 

    """ iterative Fibonacci ,  

        employing memoization in a list """ 

    if n<2: 

      return 1 

    else: 

      fibb = [0 for i in range(n+1)] 

      fibb[0] = fibb[1] = 1 # initialize 

      for k in range(2, n+1): 

         fibb[k] = fibb[k-1] + fibb[k-2] # update next element 

 

    return fibb[n] 

23 



Recursive vs. Iterative: Timing 

• Let us now do some performance comparisons: 

 fibonacci2 vs. fibonacci3: 
 

>>> import sys 

>>> sys.setrecursionlimit(20000) 

 

>>> elapsed("fibonacci2(2000)") 

0.003454221497536104 

 

>>> elapsed("fibonacci3(2000)") 

0.0008148609599825107 

 

 

• As we mentioned already, recursive calls require maintenance 
operations and memory allocation  ("frames"), thus tend to 
have a negative influence on running time, compared to the 
analogous iterative solution. 
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Iterative Fibonacci Solution Using O(1) Memory 

• No, we are not satisfied yet. 

 

• Think about the algorithm's execution flow. Suppose we have 
just executed the assignment fibb[4] = fibb[2] + fibb[3]. This 
entry will subsequently be used to determine fibb[5] and then 
fibb[6]. But then we make no further use of fibb[4]. It just lies, 
basking happily, in the memory. 

 

• The following observation holds in "real life" as well as in the 
"computational world":  

Time and space (memory, at least a computer's memory) are 
important resources that have a fundamental difference: Time 
cannot be re-used, while memory (space) can be. 
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Iterative Fibonacci Reusing Memory 

• At any point in the computation, we can maintain just two 
values, fibb[k-2] and fibb[k-1]. We use them to compute fibb[k], 
and then reclaim the space used by fibb[k-2] to store fibb[k-1] 
in it. 

 

• In practice, we will maintain two variables, prev and curr. Every 
iteration, those will be updated. Normally, we would need a 
third variable next for keeping a value temporarily. However 
Python supports the "simultaneous" assignment of multiple 
variables (first the right hand side is evaluated, then the left 
hand side is assigned). 
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Iterative Fibonacci Solution: Python Code 

def fibonacci4(n): 

    """ fibonacci in O(1) memory """ 

    if n<2: 

        return 1 # base case 

    else: 

        prev = 1 

        curr = 1 

        for i in range(n-1): # n-1 iterations (count carefully)  

            curr, prev = prev+curr, curr   

                    # simultaneous assignment 

        return curr 

 

>>> for i in range(0,7):  # sanity check 

       print(fibonacci4(i)) 

1 

1 

2 

3 

5 

8 

13 
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Iterative Fibonacci Code, Reusing Memory: Performance 

• Reusing memory can surely help if memory consumption is an issue. 
Does it help with runtime as well? 
 

>>> elapsed("fibonacci3(10000)",number=100) 

0.7590410000000001 

>>> elapsed("fibonacci4(10000)",number=100) 

0.3688609999999999 

>>> elapsed("fibonacci3(100000)",number=10) 

6.150758999999999 

>>> elapsed("fibonacci4(100000)",number=10) 

1.8084930000000004 

 

• We see that there is about 50-70% saving in time. Not dramatic, but 
significant in certain circumstances. 

• The difference has to do with different speed of access to different level 
cache in the computer memory. The fibonacci4 function uses O(1) 
memory vs. the O(n) memory usage of fibonacci3 (disregarding the size 
of the numbers themselves). 
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Closed Form Formula 
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Closed Form Formula: Code, and Danger 

  def closed_fib(n): 

     return round(((1+5**0.5)**(n+1)-(1-5**0.5)**(n+1))/(2**(n+1)*5**0.5)) 

 

# sanity check 

>>> for i in range(10, 60, 10): 

       print(i, fibonacci4(i), closed_fib(i)) 

 

10  89  89 

20  10946  10946 

30  1346269  1346269 

40  165580141  165580141 

50  20365011074  20365011074 

 

• However, being aware that floating point arithmetic in Python  
(and other programming languages) has finite precision, we are 
not convinced, and push for larger values: 
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Closed Form Formula: Code, and Danger 

• However, being aware that floating point arithmetic in Python  
(and other programming languages) has finite precision, we are 
not convinced, and push for larger values: 
 

 

>>> for i in range(40, 90): 

       if fibonacci4(i) != closed_fib(i) 

           print(i, fibonacci4(i), closed_fib(i)) 

           break 

 

 

    70  308061521170129  308061521170130 

 

 Bingo!  

31 



Reflections: Memoization, Iteration, Memory Reuse 

• In the Fibonacci numbers example, all the techniques above proved 
relevant and worthwhile performance wise. These techniques won't 
always be applicable for every recursive implementation of a function. 

 

• Consider quicksort as a specific example. In any specific execution, we 
never call quicksort on the same set of elements more than once (think 
why this is true). 

 

• So memoization is not applicable to quicksort. And replacing recursion by 
iteration, even if applicable, may not be worth the trouble and surely will 
result in less elegant and possibly more error prone code. 

 

• Even if these techniques are applicable, the transformation is often not 
automatic, and if we deal with small instances where performance is not 
an issue, such optimization may be a waste of effort. 
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A word about space (memory) complexity 
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• A measure of how much memory cells the algorithm needs 
• not including memory allocated for the input of the algorithm 

 
• This is the maximal amount of memory needed at any time point 

during the algorithm's execution 
 
 
 
 
 
 

• Compare to time complexity, which relates to the cumulative amount 
of operations made along the algorithm's execution 

algorithm execution "path" 

memory 
taken 

algorithm execution "path" 

operations 
performed 

max = space complexity 

integral = time complexity 



Space (memory) Complexity 
• Recursion depth has an implication on the space (memory) 

complexity, as each recursive call required opening a new 
environment in memory.  
 

• In this course, we will not require space complexity analysis of 
recursive algorithms, but you are expected to analyze recursion 
depth and understand its affects. 
 

• We do require understanding of space allocation requirements in 
basic scenarios such as: 
• copying (parts of) the input 
• list / string slicing 
• using + operator for lists (as opposed to += or lst.append) 

 
etc. 

 
 



Munch! 

•   The game of Munch!  

 

•   Two person games and winning strategies. 

 

•   A recursive program (in Python, of course). 
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Game Theory 
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From Wikipedia: 
• Game theory is the study of mathematical models of conflict 

and cooperation between intelligent rational decision-makers 
 

• A game is one of perfect or full information if all players know 
the moves previously made by all other players. 
 

• In zero-sum games the total benefit to all players in the game, 
for every combination of strategies, always adds to zero (more 
informally, a player benefits only at the equal expense of 
others) 
 

• Games, as studied by economists and real-world game players, 
are generally finished in finitely many moves 



Munch!  
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An image of a 3-by-4 
chocolate bar (n=3, m=4). 
This configuration is 
compactly described by the 
list of heights [3,3,3,3]  

Munch! is a two player, full information 
game. The game starts with a chocolate 
bar with n rows and m columns. Players 
alternate taking moves, where they 
chose a chocolate square that was not 
eaten yet, and munch all existing squares 
to the right and above the chosen 
square (including the chosen square). 
 
The game ends when one of the players 
chooses and munches the lower left 
square. It so happens that the lower left 
corner is poisoned, so the player who 
made that move dies immediately, and 
consequently loses the game. 



Munch! (example cont.) 
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An image of a possible 
configurations in the game. 
The white squares were 
already eaten. The 
configuration is described 
by the list of heights 
[2,2,1,0]. 

Munch! is a two player, full information 
game. The game starts with a chocolate 
bar with n rows and m columns. Players 
alternate taking moves, where they 
chose a chocolate square that was not 
eaten yet, and munch all existing squares 
to the right and above the chosen 
square (including the chosen square). 
 
The game ends when one of the players 
chooses and munches the lower left 
square. It so happens that the lower left 
corner is poisoned, so the player who 
made that move dies immediately, and 
consequently loses the game. 



A possible Run of Munch! 

[3,2,2,1] 

X 

X X 

[3,2,0,0] [3,1,0,0] [1,1,0,0] 

Suppose the game has reached the configuration on the left, 
[2,2,2,1], and it is now the turn of player 1 to move. 
Player 1 munches the square marked with X, so 
the configuration becomes [2,2,0,0].  
 
Player 2 munches the top rightmost existing square, so the 
configuration becomes [2,1,0,0]. 
 
Player 1 move leads to [1,1,0,0]. 
Player 2 move leads to [1,0,0,0]. 
 
Player 1 must now munch the poisoned lower left corner, and 
consequently loses the game (in great pain and torment). 

X 

[1,0,0,0] 

Player 1 Player 2 Player 1 



Two Player Full Information Games 
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A theorem from game theory states that in a finite, 
full information, two player, zero sum, deterministic 
game, either the first player or the second player 
has a winning strategy. 
 
Unfortunately, finding such  
winning strategy is often 
computationally infeasible. 

http://about.quickienomics.com/wp-content/uploads/2011/10/game-theory.jpg 



Munch!: Winning and Losing Configurations 

• Every configuration has fewer than n times m legal 
continuing configurations. 
 

• A given configuration C is winning if it has (at least one) 
legal losing continuation C’. The player whose turn it is in 
C is rational, and thus will choose C’ for its continuation, 
putting the opponent in a losing position 

  
• A given configuration C is losing if all its legal 

continuations are winning. No matter what the player 
whose turn it is in C will choose, the continuation C’ puts 
the opponent in a winning position. 
 

• This defines a recursion, whose base case is the winning 
configuration [0,0,…,0]. 



def win(n, m, hlst, show=False): 

    ''' determines if in a given configuration, represented by hlst, 

    in an n-by-m board, the player who makes the current move has a 

    winning strategy. If show is True and the configuration is a win, 

    the chosen new configuration is printed.''' 

    assert n>0 and m>0 and min(hlst)>=0 and max(hlst)<=n and \        

              len(hlst)==m 

    if sum(hlst)==0:  # base case: winning configuration 

        return True 

    for i in range(m):  # for every column, i 

        for j in range(hlst[i]): # for every possible move, (i,j) 

            move_hlst = [n]*i+[j]*(m-i)  

            # full height up to i, height j onwards 

            new_hlst = [min(hlst[i], move_hlst[i]) for i in range(m)]  

            # munching 

            if not win(n, m, new_hlst): 

                if show: 

                    print(new_hlst) 

                return True 

    return False 

Munch! Code (recursive) 



Running the Munch! code 

>>> win(5,3,[5,5,5],show=True) 
[5, 5, 3] 
True 
>>> win(5,3,[5,5,3],show=True) 
False 
>>> win(5,3,[5,5,2],show=True) 
[5, 3, 2] 
True 
>>> win(5,3,[5,5,1],show=True) 
[2, 2, 1] 
True 
>>> win(5,5,[5,5,5,5,5],True) 
[5, 1, 1, 1, 1] 
True 
>>> win(6,6,[6,1,1,1,1,1],show=True) 
False 
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Recursive Formulae of Algorithms Seen in 
our Course 
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פעולות מעבר   דוגמא

 לרקורסיה

קריאות  

 רקורסיביות

 סיבוכיות נוסחת נסיגה

max1 (מהתרגול) ,1 עצרת N-1 T(N)=1+T(N-1) O(N) 

 N/2 T(N)=1+T(N/2) O(log N) 1 חיפוש בינארי

Quicksort (worst case) N N-1 T(N)=N+ T(N-1) O(N2) 

Mergesort 

Quicksort (best case) 

N N/2 ,N/2 T(N)=N+2T(N/2) O(N log N) 

 slicing N N/2 T(N)=N+T(N/2) O(N)בינארי עם  חיפוש

max2 (מהתרגול) 1 N/2 ,N/2 T(N)=1+2T(N/2) O(N) 

 N-1, N-1 T(N)=1+2T(N-1) O(2N) 1 האנוי

 (לא הדוק) N-1, N-2 T(N)=1+T(N-1)+T(N-2) O(2N) 1 י'פיבונאצ



Last words (not for the Soft At Heart):  
the Ackermann Function (for reference only) 

This recursive function, invented by the German mathematician 
Wilhelm Friedrich Ackermann (1896{1962), is defined as following: 
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This is a total recursive function, namely it is defined for all arguments 
(pairs of non negative integers), and is computable (it is easy to write 
Python code for it). However, it is what is known as a non primitive 
recursive function, and one manifestation of this is its huge rate of 
growth. 
You will meet the inverse of the Ackermann function in the data structures 
course as an example of a function that grows to infinity very very slowly. 
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Ackermann function: Python Code  
(for reference only) 
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Recursion in Other Programming Languages 

Python, C, Java, and most other programming 
languages employ recursion as well as  a variety of 
other flow control mechanisms. 

By way of contrast, all LISP dialects (including Scheme) 

use recursion as their major control mechanism. We 

saw that recursion is often not the most efficient 

implementation mechanism. 
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Taken together with the central role of eval in LISP, this may have 
prompted the following statement, attributed to Alan Perlis of Yale 
University (1922-1990):  “LISP programmers know the value  of 
everything, and the cost  of nothing''. 
In fact, the origin of this quote goes back to Oscar Wilde. In The 
Picture of Dorian Gray (1891), Lord Darlington defines a cynic as ``a 
man who knows the price of everything and the value of nothing''. 

Picture from a web Page by 
Paolo Alessandrini 


