
Extended Introduction to Computer Science
CS1001.py

Instructors: Daniel Deutch, Amir Rubinstein

Teaching Assistants: Michal Kleinbort, Ben Bogin,

Noam Parzanchevski

Lecture 12:
Recursion, Continued

School of Computer Science
Tel-Aviv University

Fall Semester 2018-9
http://tau-cs1001-py.wikidot.com

Pitfalls of Using Recursion
• Every modern programming language, including, of course,

Python, supports recursion as one of the built-in control
mechanism.

• However, recursion is not the only control mechanism in
Python, and surely is not the one employed most often.

• Furthermore, as we will now see, cases where "naïve
recursion" is highly convenient for writing code may lead to
highly inefficient run times. For this reason, we will also
introduce a technique to improve recursive algorithms. We
note, however, that in some cases, eliminating recursion
altogether requires very crude means.

2

Computing Fibonacci Numbers
• We coded Fibonacci numbers, using recursion, as following:

def fibonacci(n):

 if n<=1:

 return 1

 else:

 return fibonacci(n-1) + fibonacci(n-2)

• But surely nothing could go wrong with such simple and
elegant code... To investigate this, let us explore the running
time:

3

Computing Fibonacci Numbers
• But surely nothing could go wrong with such simple and

elegant code... To investigate this, let us explore the running
time:

>>> fibonacci(30)

1346269

>>> elapsed("fibonacci(30)")

0.31555

>>> elapsed("fibonacci(35)")

3.4169379999999996

>>> elapsed("fibonacci(40)")

38.288004

>>> elapsed("fibonacci(45)")

432.662887 # over 7 minutes !!

4

Recursion Trees (reminder)

5

Recursion Trees
Typically the order of calls from each node is from left to right.

Two special types of nodes in the tree are the root of the tree (a
node without a "parent"), and a leaf (a node without children).
There is exactly one root, but there can be many leaves.

Recursion trees enable a better understanding of the recursive
process, complexity analyses, and may help designing recursive
solutions. Two important notions in this context are:

• Time complexity: the total amount of time spent in the whole

tree.
• Recursion depth: the maximal length of a path from root to leaf.

This is also the maximal number of recursive calls that are
simultaneously open.

6

Recursion Trees

• Recursion depth – distance from root to deepest leaf
• corresponds to maximal number of recursive calls that are open simultaneously

• too many such calls may cause memory overload (will discuss this soon)

7

• depth of this tree = 5

• for input n the depth is n-1 = O(n)

Recursion Trees

• Time complexity – overall number of operations in the whole tree

8

Exact Number of Calls

• We can easily modify the code, so it also counts the number of
function invocations, using a global variable, count.

def count_fibonacci(n):

 """ counting no. of function invocations """

 global count

 count += 1

 if n<2:

 return 1

 return count_fibonacci(n-1) + count_fibonacci(n-2)

9

Count(n) vs. Fibonacci(n)

10

Intuition for Improving Efficiency
• Instead of computing from scratch, we will introduce variables

fib[0], fib[1], fib[2],.... The value of each such variable will be
computed just once. Rather than recomputing it, we will fetch
the value from memory, when needed.

• The technique of storing values instead of re-computing them
has different names in different contexts: It is known as
memorization, a term coined by Donald Michie in 1968. In
programming languages like Lisp (of which Scheme is a
variant), where recursion is used heavily, there are programs to
do this optimization automatically, at run time. These are often
termed memoization.

• In other contexts, this technique is often used as part of
dynamic programming. 11

Fibonacci: Recursive Code with Memoization

• We will use a dictionary - an indexed data structure that can
grow dynamically. This dictionary, which we name fib_dict, will
contain the Fibonacci numbers already computed.

• We initialize the dictionary with fib_dict = {0:1, 1:1}.

• fibonacci2 is an envelope function, which calls the recursive fib2.

def fibonacci2(n):

 """ Envelope function for Fibonacci,

 employing memoization in a dictionary """

 fib_dict = {0:1, 1:1} # initial dictionary

 return fib2(n, fib_dict)

def fib2(n, fib_dict):

 if n not in fib_dict:

 res = fib2(n-1, fib_dict) + fib2(n-2, fib_dict)

 fib_dict[n] = res

 return fib_dict[n]

12

Fibonacci: Recursive Code with Memoization

• This small change implies a huge performance difference:

>>> elapsed("fibonacci(35)")

8.245295905878606

>>> elapsed("fibonacci2(35)")

9.053997947143898e-05

>>> elapsed("fibonacci(40)")

92.6057921749773

>>> elapsed("fibonacci2(40)")

9.909589798251517e-05

>>> elapsed("fibonacci(45)")

1031.308921394449 # 17 minutes !!

>>> elapsed("fibonacci2(45)")

0.00011015042046658152
13

Recursive Code with Memoization
• To understand how the dictionary is filled with values, let's call the

recursive function directly:

>>> fib_dict = {0:1, 1:1}

>>> fib2(5, fib_dict)

8

>>> fib_dict

{0: 1, 1: 1, 2: 2, 3: 3, 4: 5, 5: 8}

>>> fib2(7, fib_dict)

21

>>> fib_dict

{0: 1, 1: 1, 2: 2, 3: 3, 4: 5, 5: 8, 6: 13, 7: 21}

• Here, computations from the first call were re-used in the second
one, because the dictionary was not reset between calls.

14

Recursive Code with Memoization
• Here, computations from the first call were re-used in the second

one, because the dictionary was not re-set between calls.

>>> fib_dict = {0:1, 1:1}

>>> elapsed("fib2(500, fib_dict)")

0.0004189785626902008

>>> elapsed("fib2(500, fib_dict)")

3.811481833038144e-05

>>> elapsed("fib2(1000, fib_dict)")

0.0003692017477066045

>>> elapsed("fib2(1200, fib_dict)")

0.0001581480521757328

15

No recursion at all here!
Dictionary contains result.

Recursion depth is only 200

Recursion depth is only 500

Recursion Tree of Code with Memoization

• How does the recursion tree for the code with memoization look like?

• What is its depth?

• What is the time complexity of the function?

• In class, on board.

16

Pushing Recursion Depth to the Limit
>>> fibonacci2(990)

571829406815633979529643697006273045106845980748991112071

673038743714031497887739023091610769764627307772654802298

784361803421747114571265690519449915873452164193174293407

940201977897716937097604164288130909

>>> fibonacci2(1000)

Traceback (most recent call last):

removed most of the error message

fib dict[n] = fibonacci2(n-1)+fibonacci2(n-2)

RuntimeError: maximum recursion depth exceeded

• What the $#*& is going on?

• fib2(1000) worked perfectly well in the last slide, with no initialization
of the dictionary between calls!

17

Python Recursion Depth
• While recursion provides a powerful and very convenient means to

designing and writing code, this convenience is not for free.

• Each time we call a function, Python (and every other programming
language) adds another "frame" (memory environment) to the
current one. This entails allocation of memory for local variables,
function parameters, etc.

• Nested recursive calls, like the one we have in fibonacci2, build a
deeper and deeper stack of such frames.

• Most programming languages' implementations limit this recursion
depth. Specifically, Python has a nominal default limit of 1,000 on
recursion depth. However, the user (you, that is), can modify the limit
(within reason, of course).

18

Changing Python Recursion Depth

• You can import the Python sys library, find out what the limit is,
and also change it.

>>> import sys

>>> sys.getrecursionlimit() # find recursion depth limit

1000

>>> sys.setrecursionlimit(20000) # change limit to 20,000

>>> fibonacci2(3000)

664390460366960072280217847866028384244163512452783259405579765542621214

1612192573964498109829998203911322268028094651324463493319944094349260190

4534272374918853031699467847355132063510109961938297318162258568733693978

4373527897555489486841726131733814340129175622450421605101025897173235990

66277020375643878651753054710112374884914025268612010403264702514559895667

590213501056690978312495943646982555831428970135422715178460286571078062467

510705656982282054284666032181383889627581975328137149180900441221912485637

512169481172872421366781457732661852147835766185901896731335484017840319755

9969056510791709859144173304364898001 # hurray

19

Reversed Order of Calls

• As you have probably understood, Python evaluates expressions
from left to right (except for when otherwise dictated by
precedence of operators).

• Suppose we changed the order of calls inside fibonacci2: first we
call n-2, then n-1.

def fib2_reverse(n, fib_dict):

 if n not in fib_dict:

 res = fib2(n-2, fib_dict) + fib2(n-1, fib_dict)

 fib_dict[n] = res

 return fib_dict[n]

• How does the recursion tree look like now? Recursion depth?
Time complexity?

20

Reversed Order of Calls

• Memory-wise, We can now compute fibonacci up to values
(about) twice as large.

>>> fib2_reverse(1986, {0:1,1:1})

81087922640094891418438740061559113055500676604497900843229294588

75569537308860911899252119166354954493335130042702349145374612849

01292446908897559765539197111540858390529008105883495154321496723

65998031325651706942563589503431080829039101895997609300340467230

24910327809329969494380635150615996952163310835253392238539077212

07136862784763667719397907746593484736384718791709517060157571485

7409104419953597287615733

21

Fibonacci Numbers: Iterative (Non Recursive) Solution

22

Iterative Fibonacci Solution: Python Code

def fibonacci3(n):

 """ iterative Fibonacci ,

 employing memoization in a list """

 if n<2:

 return 1

 else:

 fibb = [0 for i in range(n+1)]

 fibb[0] = fibb[1] = 1 # initialize

 for k in range(2, n+1):

 fibb[k] = fibb[k-1] + fibb[k-2] # update next element

 return fibb[n]

23

Recursive vs. Iterative: Timing

• Let us now do some performance comparisons:

 fibonacci2 vs. fibonacci3:

>>> import sys

>>> sys.setrecursionlimit(20000)

>>> elapsed("fibonacci2(2000)")

0.003454221497536104

>>> elapsed("fibonacci3(2000)")

0.0008148609599825107

• As we mentioned already, recursive calls require maintenance
operations and memory allocation ("frames"), thus tend to
have a negative influence on running time, compared to the
analogous iterative solution.

24

Iterative Fibonacci Solution Using O(1) Memory

• No, we are not satisfied yet.

• Think about the algorithm's execution flow. Suppose we have
just executed the assignment fibb[4] = fibb[2] + fibb[3]. This
entry will subsequently be used to determine fibb[5] and then
fibb[6]. But then we make no further use of fibb[4]. It just lies,
basking happily, in the memory.

• The following observation holds in "real life" as well as in the
"computational world":

Time and space (memory, at least a computer's memory) are
important resources that have a fundamental difference: Time
cannot be re-used, while memory (space) can be.

25

Iterative Fibonacci Reusing Memory

• At any point in the computation, we can maintain just two
values, fibb[k-2] and fibb[k-1]. We use them to compute fibb[k],
and then reclaim the space used by fibb[k-2] to store fibb[k-1]
in it.

• In practice, we will maintain two variables, prev and curr. Every
iteration, those will be updated. Normally, we would need a
third variable next for keeping a value temporarily. However
Python supports the "simultaneous" assignment of multiple
variables (first the right hand side is evaluated, then the left
hand side is assigned).

26

Iterative Fibonacci Solution: Python Code

def fibonacci4(n):

 """ fibonacci in O(1) memory """

 if n<2:

 return 1 # base case

 else:

 prev = 1

 curr = 1

 for i in range(n-1): # n-1 iterations (count carefully)

 curr, prev = prev+curr, curr

 # simultaneous assignment

 return curr

>>> for i in range(0,7): # sanity check

 print(fibonacci4(i))

1

1

2

3

5

8

13

27

Iterative Fibonacci Code, Reusing Memory: Performance

• Reusing memory can surely help if memory consumption is an issue.
Does it help with runtime as well?

>>> elapsed("fibonacci3(10000)",number=100)

0.7590410000000001

>>> elapsed("fibonacci4(10000)",number=100)

0.3688609999999999

>>> elapsed("fibonacci3(100000)",number=10)

6.150758999999999

>>> elapsed("fibonacci4(100000)",number=10)

1.8084930000000004

• We see that there is about 50-70% saving in time. Not dramatic, but
significant in certain circumstances.

• The difference has to do with different speed of access to different level
cache in the computer memory. The fibonacci4 function uses O(1)
memory vs. the O(n) memory usage of fibonacci3 (disregarding the size
of the numbers themselves).

28

Closed Form Formula

29

Closed Form Formula: Code, and Danger

 def closed_fib(n):

 return round(((1+5**0.5)**(n+1)-(1-5**0.5)**(n+1))/(2**(n+1)*5**0.5))

sanity check

>>> for i in range(10, 60, 10):

 print(i, fibonacci4(i), closed_fib(i))

10 89 89

20 10946 10946

30 1346269 1346269

40 165580141 165580141

50 20365011074 20365011074

• However, being aware that floating point arithmetic in Python
(and other programming languages) has finite precision, we are
not convinced, and push for larger values:

30

Closed Form Formula: Code, and Danger

• However, being aware that floating point arithmetic in Python
(and other programming languages) has finite precision, we are
not convinced, and push for larger values:

>>> for i in range(40, 90):

 if fibonacci4(i) != closed_fib(i)

 print(i, fibonacci4(i), closed_fib(i))

 break

 70 308061521170129 308061521170130

 Bingo!

31

Reflections: Memoization, Iteration, Memory Reuse

• In the Fibonacci numbers example, all the techniques above proved
relevant and worthwhile performance wise. These techniques won't
always be applicable for every recursive implementation of a function.

• Consider quicksort as a specific example. In any specific execution, we
never call quicksort on the same set of elements more than once (think
why this is true).

• So memoization is not applicable to quicksort. And replacing recursion by
iteration, even if applicable, may not be worth the trouble and surely will
result in less elegant and possibly more error prone code.

• Even if these techniques are applicable, the transformation is often not
automatic, and if we deal with small instances where performance is not
an issue, such optimization may be a waste of effort.

32

A word about space (memory) complexity

33

• A measure of how much memory cells the algorithm needs
• not including memory allocated for the input of the algorithm

• This is the maximal amount of memory needed at any time point

during the algorithm's execution

• Compare to time complexity, which relates to the cumulative amount
of operations made along the algorithm's execution

algorithm execution "path"

memory
taken

algorithm execution "path"

operations
performed

max = space complexity

integral = time complexity

Space (memory) Complexity
• Recursion depth has an implication on the space (memory)

complexity, as each recursive call required opening a new
environment in memory.

• In this course, we will not require space complexity analysis of
recursive algorithms, but you are expected to analyze recursion
depth and understand its affects.

• We do require understanding of space allocation requirements in
basic scenarios such as:
• copying (parts of) the input
• list / string slicing
• using + operator for lists (as opposed to += or lst.append)

etc.

Munch!

• The game of Munch!

• Two person games and winning strategies.

• A recursive program (in Python, of course).

35

Game Theory

36

From Wikipedia:
• Game theory is the study of mathematical models of conflict

and cooperation between intelligent rational decision-makers

• A game is one of perfect or full information if all players know
the moves previously made by all other players.

• In zero-sum games the total benefit to all players in the game,
for every combination of strategies, always adds to zero (more
informally, a player benefits only at the equal expense of
others)

• Games, as studied by economists and real-world game players,
are generally finished in finitely many moves

Munch!

37

An image of a 3-by-4
chocolate bar (n=3, m=4).
This configuration is
compactly described by the
list of heights [3,3,3,3]

Munch! is a two player, full information
game. The game starts with a chocolate
bar with n rows and m columns. Players
alternate taking moves, where they
chose a chocolate square that was not
eaten yet, and munch all existing squares
to the right and above the chosen
square (including the chosen square).

The game ends when one of the players
chooses and munches the lower left
square. It so happens that the lower left
corner is poisoned, so the player who
made that move dies immediately, and
consequently loses the game.

Munch! (example cont.)

38

An image of a possible
configurations in the game.
The white squares were
already eaten. The
configuration is described
by the list of heights
[2,2,1,0].

Munch! is a two player, full information
game. The game starts with a chocolate
bar with n rows and m columns. Players
alternate taking moves, where they
chose a chocolate square that was not
eaten yet, and munch all existing squares
to the right and above the chosen
square (including the chosen square).

The game ends when one of the players
chooses and munches the lower left
square. It so happens that the lower left
corner is poisoned, so the player who
made that move dies immediately, and
consequently loses the game.

A possible Run of Munch!

[3,2,2,1]

X

X X

[3,2,0,0] [3,1,0,0] [1,1,0,0]

Suppose the game has reached the configuration on the left,
[2,2,2,1], and it is now the turn of player 1 to move.
Player 1 munches the square marked with X, so
the configuration becomes [2,2,0,0].

Player 2 munches the top rightmost existing square, so the
configuration becomes [2,1,0,0].

Player 1 move leads to [1,1,0,0].
Player 2 move leads to [1,0,0,0].

Player 1 must now munch the poisoned lower left corner, and
consequently loses the game (in great pain and torment).

X

[1,0,0,0]

Player 1 Player 2 Player 1

Two Player Full Information Games

40

A theorem from game theory states that in a finite,
full information, two player, zero sum, deterministic
game, either the first player or the second player
has a winning strategy.

Unfortunately, finding such
winning strategy is often
computationally infeasible.

http://about.quickienomics.com/wp-content/uploads/2011/10/game-theory.jpg

Munch!: Winning and Losing Configurations

• Every configuration has fewer than n times m legal
continuing configurations.

• A given configuration C is winning if it has (at least one)
legal losing continuation C’. The player whose turn it is in
C is rational, and thus will choose C’ for its continuation,
putting the opponent in a losing position

• A given configuration C is losing if all its legal

continuations are winning. No matter what the player
whose turn it is in C will choose, the continuation C’ puts
the opponent in a winning position.

• This defines a recursion, whose base case is the winning
configuration [0,0,…,0].

def win(n, m, hlst, show=False):

 ''' determines if in a given configuration, represented by hlst,

 in an n-by-m board, the player who makes the current move has a

 winning strategy. If show is True and the configuration is a win,

 the chosen new configuration is printed.'''

 assert n>0 and m>0 and min(hlst)>=0 and max(hlst)<=n and \

 len(hlst)==m

 if sum(hlst)==0: # base case: winning configuration

 return True

 for i in range(m): # for every column, i

 for j in range(hlst[i]): # for every possible move, (i,j)

 move_hlst = [n]*i+[j]*(m-i)

 # full height up to i, height j onwards

 new_hlst = [min(hlst[i], move_hlst[i]) for i in range(m)]

 # munching

 if not win(n, m, new_hlst):

 if show:

 print(new_hlst)

 return True

 return False

Munch! Code (recursive)

Running the Munch! code

>>> win(5,3,[5,5,5],show=True)
[5, 5, 3]
True
>>> win(5,3,[5,5,3],show=True)
False
>>> win(5,3,[5,5,2],show=True)
[5, 3, 2]
True
>>> win(5,3,[5,5,1],show=True)
[2, 2, 1]
True
>>> win(5,5,[5,5,5,5,5],True)
[5, 1, 1, 1, 1]
True
>>> win(6,6,[6,1,1,1,1,1],show=True)
False

43

Recursive Formulae of Algorithms Seen in
our Course

44

פעולות מעבר דוגמא

 לרקורסיה

קריאות

 רקורסיביות

 סיבוכיות נוסחת נסיגה

max1 (מהתרגול) ,1 עצרת N-1 T(N)=1+T(N-1) O(N)

 N/2 T(N)=1+T(N/2) O(log N) 1 חיפוש בינארי

Quicksort (worst case) N N-1 T(N)=N+ T(N-1) O(N2)

Mergesort

Quicksort (best case)

N N/2 ,N/2 T(N)=N+2T(N/2) O(N log N)

 slicing N N/2 T(N)=N+T(N/2) O(N)בינארי עם חיפוש

max2 (מהתרגול) 1 N/2 ,N/2 T(N)=1+2T(N/2) O(N)

 N-1, N-1 T(N)=1+2T(N-1) O(2N) 1 האנוי

 (לא הדוק) N-1, N-2 T(N)=1+T(N-1)+T(N-2) O(2N) 1 י'פיבונאצ

Last words (not for the Soft At Heart):
the Ackermann Function (for reference only)

This recursive function, invented by the German mathematician
Wilhelm Friedrich Ackermann (1896{1962), is defined as following:

45

This is a total recursive function, namely it is defined for all arguments
(pairs of non negative integers), and is computable (it is easy to write
Python code for it). However, it is what is known as a non primitive
recursive function, and one manifestation of this is its huge rate of
growth.
You will meet the inverse of the Ackermann function in the data structures
course as an example of a function that grows to infinity very very slowly.

0 and0 if

0 and0 if

0 if

))1,(,1(

)1,1(

1

),(























nm

nm

m

nmAmA

mA

n

nmA

Ackermann function: Python Code
(for reference only)

46

Recursion in Other Programming Languages

Python, C, Java, and most other programming
languages employ recursion as well as a variety of
other flow control mechanisms.

By way of contrast, all LISP dialects (including Scheme)

use recursion as their major control mechanism. We

saw that recursion is often not the most efficient

implementation mechanism.

47

Taken together with the central role of eval in LISP, this may have
prompted the following statement, attributed to Alan Perlis of Yale
University (1922-1990): “LISP programmers know the value of
everything, and the cost of nothing''.
In fact, the origin of this quote goes back to Oscar Wilde. In The
Picture of Dorian Gray (1891), Lord Darlington defines a cynic as ``a
man who knows the price of everything and the value of nothing''.

Picture from a web Page by
Paolo Alessandrini

