
Extended Introduction to Computer Science
CS1001.py

Instructors: Benny Chor, Amir Rubinstein
Teaching Assistants: Michal Kleinbort, Amir Gilad

Founding TA and Python Guru: Rani Hod

Lecture 17A: Finite and Infinite Iterators

School of Computer Science
Tel-Aviv University

Spring Semester, 2017
http://tau-cs1001-py.wikidot.com

HW 4, Question 8
)the Joy of Floating Point Arithmetic(

>>> 2.0**52 == 2.0**52+1.0

False

>>> 2.0**53 == 2.0**53+1.0

True

This is easy to explain, given our understanding of how
floating point numbers are represented, and the fact that the
fraction part is exactly 52 bit long.

But what about

>>> 2.0**53 == 2**53+1

False

Here things seem somewhat more mysterious…
2

HW 4, Question 8
the Joy of Floating Point Arithmetic
>>> 2.0**53 == 2**53+1

False

To perform the comparison, the computer has to cast either
the integer into a float (which is the “standard”), or the float
into an integer. It seems that when large numbers are
involved, the latter takes place. See the part on big-int in the
function make_compare_fun (line 90 and onwards) of PyPy
floatobj.py code (not the most enjoyable reading, mind you).

https://bitbucket.org/pypy/pypy/src/789fb549e0afde4710aa9
7497c424599cd36180f/pypy/objspace/std/floatobject.py?at=
default&fileviewer=file-view-default

Thanks to Omer Chor for figuring this out!
3

https://bitbucket.org/pypy/pypy/src/789fb549e0afde4710aa97497c424599cd36180f/pypy/objspace/std/floatobject.py?at=default&fileviewer=file-view-default

Lectures 15-18 Highlights

Data Structures

1. Python's lists (arrays) vs. linked list

2. binary search trees

3. hash tables
• The dictionary problem (find, insert, delete).

• hash functions, Python's hash

4. TODAY - iterators

4

Lecture 19 part A, Plan
• Iterators

• Lazy (delayed) evaluation.

• Infinite iterators.

• Examples: Merging sorted iterators.

• Handling Errors: try and except

5

Iterators and Generators

• Linked lists and Python's built-in lists (arrays in other
programming languages) are two ways to represent
a collection of elements. There are other ways, such
as trees, dictionaries, and more.

• It is desirable that functions, which use the data as part of a
computation, will be as oblivious as possible to such
internal representation, which may change over time.
• This general idea is captured in a concrete way by Python's

iterators.
• Iterators provide a generic access to a ordered collection of

items. So generic that it will even allow us to access an
infinite collection (also known as stream)!

• Python's generators are tools to create iterators .

6

Iterables
• An iterable object is an object capable of

returning its members one at a time.

• In particular, we can use a for loop on iterables

• Examples of iterables include:
• all sequence types (such as list, str , tuple and range)
• some non-sequence types like dict, set and File
• objects of any user defined classes with an __iter__() or

__getitem__() method (this is how you make your new class
iterable. But we will not get into this here)

(see http://docs.python.org/dev/glossary.html#term-iterable)

7

http://docs.python.org/dev/glossary.html

Iterables
• An iterable object is an object capable of returning its members one at a

time.
• In particular, we can use a for loop on iterables.
• Examples of iterables include:

• all sequence types (such as list, str , tuple and range)
• certain non-sequence types like dict, set and File
• objects of any user defined classes with an __iter__() or

__getitem__() method (this is how you make your new class iterable.
But we will not get into this here).

(see http://docs.python.org/dev/glossary.html#term-iterable)

range is a special iterable class.

>>> a=range(10)
>>> type(a)
<class 'range'>
>>> a
range(0, 10)
>>> a[2]
28

http://docs.python.org/dev/glossary.html

Thou Shalt Not Modify an iterable
during Iteration

• If we add or remove elements to/from an iterable during
iteration, strange things may happen. For example

>>> elems = ['a','b','c']
>>> for e in elems:

print(e)
elems.remove(e)

a
c
>>> elems
['b']
>>>

9

adapted from

http://unspecified.wordpress.com/2009/02/12/thou-shalt-not-modify-a-list-during-
iteration/

http://unspecified.wordpress.com/2009/02/12/thou-shalt-not-modify-a-list-during-iteration/

Iterators
• An iterator is an object representing a stream of data.
• Each iterable type in Python has its own iterator type, created using the

built-in iter()
• Repeated calls to the built-in function next(it), where it is an iterator (or calls

to the iterator’s __next__() method) return successive items in the stream.
• When no more data are available a StopIteration exception is raised instead.

At this point, the iterator object is "exhausted'', and any further calls to
next(it) just raise StopIteration exception again.

>>> it = iter([0,1,2])
>>> next(it)
0
>>> next(it)
1
>>> next(it)
2
>>> next(it)
Traceback (most recent call last):

File "<pyshell#26>", line 1, in <module>
next(it)

StopIteration10

Iterables and Iterators
• We can create an iterator by calling the function iter with an iterable

object argument (like list, tuple, str, dict, range , etc.)
• This function does not modify the original iterable object. In fact,

when we loop over an iterable using for, an iterator is created first,
and then the items are called, one by one, using next() .

>>> table = {"benny“:72,"rani“:82,"raanan“:92}

>>> next(table)
Traceback (most recent call last):

File "<pyshell#13>", line 1, in <module>
next(table)

TypeError: dict object is not an iterator

>>> it = iter(table)

>>> next(it)
'rani'

>>> next(it)
'benny'11

Iterables and Iterators, cont.
>>> next(it)
'raanan'
>>> next(it)
Traceback (most recent call last):

File "<pyshell#18>", line 1, in <module>
next(it)

StopIteration

>>> table = {"benny“:72,"rani“:82,"raanan“:92}
>>> for key in table: # an iterator is created

print(key) # “under the hood”
more details later

rani
benny
raanan

12

Iterables and Iterators, cont.

• As we see from this example, a dictionary (when transformed into
an iterator), returns the keys one by one.

• Files return the lines one by one, etc.

• We can turn an iterator into a list as well. This list will reflect the
current state of the iterator, not its original state:

>>> table = {"benny“:72,"rani“:82,"raanan“:92}
>>> it = iter(table)
>>> next(it)
'rani'
>>> list(it)
['benny', 'raanan']
>>> next(it)
Traceback (most recent call last):

File "<pyshell#82>", line 1, in <module>
next(it)

StopIteration

13

Iterators as a Tool for Abstraction

• The use of iterators hides the implementation of data
collections. For example, when we see the code

for x in SomeCollection:
….

• We do not have to know if SomeCollection is a list, a tuple,
a string, a dict, or any user defined data collection.
Furthemore, we can later modify the implementation of
SomeCollection, for example change it from a list to a dict,
and the code using it (called client code) will not have to be
changed.

• Similarly when we use next(it), it may be an iterator of any
kind of a data collection, with any order of traversal.

14

Iterables, Iterators, and Generators:
More Examples

>>> mylist = [x for x in range(10**8)]
>>> it1 = iter(mylist)
>>> it2 = (x for x in range(10**8)) # note the () instead of []

>>> type(mylist)
<class 'list'>
>>> type(it1)
<class 'list_iterator'>
>>> type(it2)
<class 'generator'> #list comprehension syntax inside () is one way to

#create a generator. The other will be shown next

>>> # mylist
typing this without the comment will clobber your screen
and most likely will cause your Python shell to crash

>>> it1
<list_iterator object at 0x17027d0>
>>> it2
<generator object <genexpr> at 0x1704f08>

15

Iterables, Iterators, and Generators, cont.
>>> len(it2)
Traceback (most recent call last):

File "<pyshell#41>", line 1, in <module>
len(it2)

TypeError: object of type 'generator' has no len()

• it1 and it2 are iterators (respectively generator) representing the first 108

integers.
• These integers can fit in just under 1GB RAM. But, can we have iterators

representing even more items?

>>> it3 = (x for x in range(2**100)) # again, note the ()
>>> next(it3)
0
>>> next(it3)
1

• An iterable with 2100 elements will not fit in Amazon, Google, NSA, and
NASA computers, even if taken together.

• Iterators and generators represent streams, but produce only one element
at a time. Therefore, there is no problem representing a 2100 long stream!16

Generators for Infinite Streams
In fact, there is no problem representing streams with countably
many elements.
To do that, we will introduce generator functions.

So far, our functions contained no state, or memory. Successive
calls to the function with the same arguments produced the same
results (assuming the function does not refer to a global variable,
which may have changed). This is now going to change .

def naturals():
""" a generator for all natural numbers """
n=1
while True:

yield n
n+=1

17

Generators for Infinite Streams, cont.

A function that contains a yield statement is termed a
generator function. When a generator function is called, the
actual arguments are bound to the function’s formal argument
names in the usual way, but no code in the body of the
function is executed. Instead, a generator—iterator object is
returned.

>>> naturals()
<generator object natural at 0x16f60d0>
>>> nat = naturals()
>>> nat
<generator object natural at 0x16f60a8

18

Generators, cont.
• nat is a generator--iterator. To get its "returned value'', which is

specified by the yield statement, we invoke next .

>>> next(nat)
1
>>> next(nat)
2
>>> [next(nat) for i in range(10)]
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

• We see that nat has a state , which is retained, unchanged,
between successive calls.

• We can have additional instances of the same generator function.
>>> nat2 = naturals()
>>> next(nat2)
1
>>> next(nat)
1319

Lazy Evaluation
• In programming language theory, lazy evaluation

or call-by-need is an evaluation strategy, which
delays the evaluation of an expression until its
value is actually required, and also avoids
repeated evaluations by memoization (caching).

• The "opposite'' of lazy actions is eager evaluation,
sometimes known as strict evaluation. Eager
evaluation is the “standard” evaluation behavior,
used in most programming languages.

20

Lazy Evaluation (cont.)
• Python's iterators and generators employ lazy

evaluation.

• The next item is evaluated only when it is required,
by means of executing next(). We remark that it
would not be possible to handle finite but very large
iterators/generators, or infinite iterators/generators,
without the lazy evaluation mechanism.

• Scheme, the good old programming language used
in TAU (and elsewhere) has a special syntax,
enabling the delay and force of an evaluation of an
expression. These make possible in Scheme the use
of very large streams, and of infinite streams.

21

Eager evaluation

We have been using eager evaluation all the time and did not
know it!

Just like Le Bourgeois Gentilhomme, by Molière:

“Good heavens! For more than forty years I have been
speaking prose without knowing it.”

:מוליירמאת" גם הוא באצילים"בקומדיה, ורדן'זמסייה

ואינני פרוזהזה למעלה מארבעים שנה שאני מדבר ! חיי ראשי"

".יודע זאת כלל

(Quotations taken from Wikipedia)

22

A Fibonacci Numbers’ Generator

def fib():
""" a generator for all Fibonacci numbers"""
a, b = 0, 1
while True:

yield b
a, b = b, a+b

>>> Fib = fib()
>>> Fib
<generator object fib at 0x1704fa8>

• Again, Fib is a generator--iterator, so to get its “returned value'', which is
specified by the yield statement, we invoke next() .

>>> next(Fib)
1
>>> next(Fib)
1
>>> next(Fib)
2
>>> [next(Fib) for i in range(10)]
[3, 5, 8, 13, 21, 34, 55, 89, 144, 233]

23

Execution Specification

When a yield statement is encountered,

yield expression_list

the state of the function is “frozen”, and the value of
expression_list is returned to the caller of next.

By "frozen" we mean that all local state is retained, including
the current bindings of local variables, the instruction pointer,
and the internal evaluation stack: enough information is saved
so that the next time next() is invoked, the function can
proceed exactly as if the yield statement were just another
external call.

(see http://www.python.org/dev/peps/pep-0255/)

This is similar to what is called co-routine, in contrast with a
“normal function” call which is also termed sub-routine.

24

http://www.python.org/dev/peps/pep-0255/

Merging Sorted, Infinite Iterators

Suppose iter1 and iter2 are sorted iterators, and in addition,
both are infinite. We wish to produce a new sorted iterator, which is
the merge of both.

def merge(iter1,iter2):
""" on input iter1, iter2, two infinite orted iterators,
produces the sorted merge of the two iterators ""“

left = next(iter1)
right = next(iter2)
while True:

if left<right:
yield left
left = next(iter1)

else:
yield right
right = next(iter2)

25

Merging Sorted, Infinite iterators: Execution
>>> nat1=natural()
>>> nat2=natural()
>>> nat3=merge(nat1,nat2)
nat3, too, is a generator--iterator, so to get its “returned value'',
which is specified by the yield statement, we invoke next.
>>> next(nat3)
1
>>> next(nat3)
1
>>> next(nat3)
2
>>> next(nat3)
2
>>> [next(nat3) for i in range(10)]
[3, 3, 4, 4, 5, 5, 6, 6, 7, 7]

26

An Attempt to Merge Sorted, Finite iterators

Should the iterators in merge really be infinite ?
>>> nat1 = natural()
>>> nat2 = (n-2 for n in range(3))
>>> nat3 = merge(nat1,nat2)
>>> next(nat3)
-2
>>> next(nat3)
-1
>>> next(nat3)
0
>>> next(nat3)
Traceback (most recent call last):

File "<pyshell#48>", line 1, in <module>
next(nat3)

File "/Users/benny/Documents/InttroCS2011/Code/intro17/lecture17.py",
line 30, in merge

right=next(iter2)
StopIteration

27

What went wrong?
The merged iterator, nat3, was
not yet exhausted, yet one of
the arguments to merge, nat2,
was exhausted. The merging
procedure is unaware of this,
and still invoked next(iter2) ,
causing a StopIteration error.

Handling Errors: try and except
Python provides an elaborate mechanism to handle run time errors.
For example, division by zero causes a ZeroDivisionError .
>>> 5/0
Traceback (most recent call last):

File "<pyshell#37>", line 1, in <module>
5/0

ZeroDivisionError: int division or modulo by zero

Such errors disrupt the flow of control in a program execution.
We may want to detect such error and allow the flow of control to
continue. This may not be so important in the rather small programs
written in this course, but becomes meaningful in large software
projects.
Python enables such detection, using the keywords try and except.

28

Handling Errors: try and except - example

def division(a,b):
try:

return a/b
except ZeroDivisionError:

print("division by zero")

Let us now apply this function in two different cases:
>>> division(5,6)
0.8333333333333334

>>> division(5,0)
division by zero

We will employ this error handling mechanism to enable merging
any non-empty sorted iterators, finite or infinite .

29

More on try and except
We could also solve the division by zero problem using one if statement.
The following example shows a situation where we would need to write
many if statements, so try/except is better
def compute(…):

try
a long computation, with several steps
that may cause zero divide

except ZeroDivisionError:
print("division by zero")

We will also use try/except when it is either impossible or expensive to
check for the condition in advance. Example – when we invert a matrix,
checking in advance that it is not singular would take as much time as
inverting, so it makes more sense to try to invert, and raise an exception if
we discover that the matrix is singular while we do it.

We could have multiple except clauses; a list of exceptions to be handled
in each clause; and the last clause may omit exception names (to handle
all others).

30

For loop
We mentioned that a for loop over an iterable using for,
actually uses an iterator. We now show an example:

>>> elems = ['a','b','c‘]

31

for e in elems:
print(e)

a
b
c

It = iter(elems)
while True:

try:
print(next(it))

except StopIteration:
break

a
b
c

Is the same as

Merging Non-Empty, Sorted iterators. Take 2
def merge3(iter1,iter2):

""" on input iter1, iter2, two non-empty sorted iterators, not
necessarily infinite, produces sorted merge of the two iterators ""“

left=next(iter1)
right=next(iter2)
while True:

if left<right:
yield left
try:

left=next(iter1)
except StopIteration: # iter1 is exhausted

yield right
remaining = iter2
break

*
* continued on next page32

merge3 : cont.

else:
yield right
try:

right=next(iter2)
except StopIteration: # iter2 is exhausted

yield left
remaining = iter1
break

end of the while loop
for elem in remaining: # protects against StopIteration

yield(elem)

33

Merge3: Examples of Executions
>>> iter1=(x**2 for x in range(4))
>>> iter2=natural()
>>> merged=merge3(iter1,iter2)
>>> [next(merged) for i in range(14)]
[0, 1, 1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 9, 10]

>>> iter1=(x**2 for x in range(5))
>>> iter2=(x**3 for x in range(6))
>>> merged=merge3(iter1,iter2)
>>> [next(merged) for i in range(11)]
[0, 0, 1, 1, 4, 8, 9, 16, 27, 64, 125]

Finally, lets see what happens when the original iterators/generators
are not sorted .
>>> iter1=((-1)**x*x**2 for x in range(5))
>>> iter2=(x**3 for x in range(6))
>>> merged=merge3(iter1,iter2)
>>> [next(merged) for i in range(11)]
[0, 0, -1, 1, 4, -9, 8, 16, 27, 64, 125]
garbage in, garbage out

34

