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And Now to Something Completely Different: Recursion

’If seven maids with seven mops
Swept it for half a year,
Do you suppose,’ the Walrus said,
’That they could get it clear?’
’I doubt it,’ said the Carpenter,

And shed a bitter tear.
’O Oysters, come and walk with us!’
The Walrus did beseech.
’A pleasant walk, a pleasant talk,
Along the briny beach:
We cannot do with more than four,
To give a hand to each.’

Through the Looking-Glass and What Alice Found There:

Lewis Carroll, 1871.
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And Now For Something Completely Different: Recursion

(originally taken from http://www.dominiek.eu/blog/?m=200711) 3 / 39
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Lecture 10–11: Plan

Recursion, and recursive functions

• Basic examples and definition of recursion

• Fibonacci
• factorial

• Binary search - revisited

• Sorting
I QuickSort
I MergeSort

• Towers of Hanoi

• Improving recursion with memoization
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Recursion

A function f(·), whose definition contains a call to f(·) itself, is
called recursive.

A simple example is the factorial function, n! = 1 · 2 · . . . · n.
It can be coded in Python, using recursion, as following:
def factorial(n):

if n==1:

return 1

else:

return n*factorial(n-1)

A second simple example is the Fibonacci numbers, defined by
F1 = 1, F2 = 1, and for n > 2, Fn = Fn−2 + Fn−1.
A Fibonacci numbers function can be programmed in Python, using
recursion, as following:
def fibonacci(n):

if n<=2:

return 1

else:

return fibonacci(n-2)+fibonacci(n-1)
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Recursion and Convergence

At first sight, one may suspect that the recursive definitions above
will lead nowhere. Or in other words, that they are cyclical and will
never converge. This surely is not the case, and for specific instances
one can simply run the code and get the (correct) answers.

>>> factorial(19)

121645100408832000

>>> fibonacci(21)

10946

There are two keys to correct design of recursive functions. The first
one is to have a base case (one or more), which is the halting
condition (no deeper recursion). In the factorial example, the base
case was the condition n==1. In the Fibonacci example, it was n<=2.
The second “design principle” is to make sure that all executions, or
“runs”, of the recursion lead to one of these base cases.
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Recursion and Cyclicity

Recursive definitions that are cyclical will naturally not converge. A
famous example is the following “dictionary definition” of recursion:

Recursion
re·cur·sion
n. Mathematics

See ”Recursion”.
[from Latin recursus, past participle of recurrere, to run back;
see recur.]

You may also explore Google’s version.
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Choice of Base Cases

Recursive definitions that are seemingly proper may in fact diverge
(lead to an infinite loop), due to unforeseen conditions in which the
base cases are never reached. Consider, for example, the factorial
function,

>>> factorial(1.9)

>>> factorial(0)

both lead to an infinite loop.

(How would you fix it? Does it need fixing in the first place?)
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Binary Search, Revisited

We saw an iterative version of binary search.

def binary_search(key ,lst):

""" iterative binary search

lst better be sorted for binary search to work """

n = len(lst)

left = 0

right = n-1

outcome = None # default value

while left <=right:

middle =( right+left )//2

if key == lst[middle ][0]: # item found

outcome = lst[middle]

break # gets out of the loop if key was found

elif key < lst[middle ][0]: # item cannot be in top half

right = middle -1

else: # item cannot be in bottom half

left = middle +1

if not outcome: # holds when the key is not in the list

print(key , "not found")

return outcome
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Binary Search, Recursively

Here is a recursive implementation of the same task. This code
follows the iterative code closely. It passes the key, the original list
and two indices (lower, upper) to the recursive call.

def rec_binary_search(key , lst , left , right ):

""" recursive binary search.

passing lower and upper indices """

if left >right:

return None

middle = (left+right )//2

if key == lst[middle ][0]:

return lst[middle]

elif key < lst[middle ][0]: # item cannot be in top half

return rec_binary_search(key , lst , left , middle -1)

else: # item cannot be in bottom half

return rec_binary_search(key , lst , middle+1, right)
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Recursive Binary Search, Example Runs
Input list contains tuples of tghe form (name, id) representing
students with random names and id’s.

>>> from students import *

>>> stud_list = students (10**5)

>>> srt = sorted(stud_list , key=lambda pair:pair [0]) #sort by name

>>> binary_search(srt [11][0] , srt)

(’abeq’, 843594317)

>>> rec_binary_search(srt [11][0] , srt , 0, len(srt)-1)

(’abeq’, 843594317)

>>> elapsed("binary_search(srt [11][0] , srt)",number =10000)

0.2976080000000003

>>> elapsed(’rec_binary_search(srt [11][0] , srt , 0, len(srt)-1)’,

number =10000)

0.42181900000000017 # 40% slower

>>> binary_search(’amir’, srt) # Amir is not in the list

>>> rec_binary_search(’amir’, srt , 0, len(srt)-1)

>>>

>>> elapsed("binary_search(’amir ’, srt)",number =10000)

0.2718720000000001

>>> elapsed("rec_binary_search(’amir ’, srt , 0, len(srt)-1)",

number =10000)

0.4183180000000002 # 40% slower 11 / 39



Binary Search, Recursively, Using Slicing

Here is a second recursive version of the same task. It looks a bit
simpler, as we don’t need to give lower and upper bounds as
parameters. Instead, we use slicing.

def rec_slice_binary_search(key ,lst):

""" recursive binary search.

passing sliced list """

n = len(lst)

if n<=0:

return None

if key == lst[n//2][0]:

return lst[n//2]

elif key < lst[n//2][0]: # item cannot be in top half

return rec_slice_binary_search(key ,lst[0:n//2])

else: # item cannot be in bottom half

return rec_slice_binary_search(key ,lst[n//2+1:n])
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Binary Search, Recursively, Using Slicing AND
Intermediate Printing

def rec_slice_disp_binary_search(key ,lst):

""" recursive binary search , displaying intermediate results.

passing sliced """

n = len(lst)

if n<=0:

print(key ," not found")

return None

print(n,lst[n//2])

if key == lst[n//2][0]:

return lst[n//2]

elif key < lst[n//2][0]: # item cannot be in top half

return rec_slice_disp_binary_search(key ,lst[0:n//2])

else: # item cannot be in bottom half

return rec_slice_disp_binary_search(key ,lst[n//2+1:n])
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Recursive Binary Search, Example Runs
Input list contains objects from the Student class.

>>> st_list = students (10**4) # names , id generated at random

>>> srt = sorted(st_list , key = lambda pair:pair [0])

>>> srt [5000 -2:5000+2] # sample slice

[(’bhsg’, 865349147) , (’bhsiod ’, 908814636) ,

(’bhsj’, 642338206) , (’bhsjaud ’, 365944448)]

>>> rec_slice_disp_binary_search(srt [10**4//2 -1][0] , srt)

10000 (’muegoc ’, 213663817)

5000 (’gjzo’, 89530911)

2500 (’jnuaqsme ’, 307975520)

1250 (’legrpw ’, 447827839)

625 (’lzicmwxh ’, 80661931)

313 (’miervon ’, 591363219)

157 (’monxzy ’, 763580450)

79 (’mrsp’, 331551639)

40 (’msuydfbt ’, 825603635)

20 (’mtq’, 978442113)

10 (’mtsoflj ’, 939877912)

5 (’mtunhog ’, 688777936)

3 (’mtysbg ’, 44172980)

2 (’mucxsv ’, 606969888)

(’mucxsv ’, 606969888)
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Recursive Binary Search, Two Additional Example Runs

>>> rec_slice_disp_binary_search(srt [10**4//2][0] , srt)

10000 (’muegoc ’, 213663817)

(’muegoc ’, 213663817) # smack in the middle

>>> rec_slice_disp_binary_search("amir",srt)# key not existing

10000 (’ngbtk’, 34802425)

5000 (’gqilumdv ’, 237735464)

2500 (’dfsz’, 660962448)

1250 (’bpov’, 990162785)

625 (’avw’, 632545828)

312 (’akqus’, 749218619)

155 (’apv’, 644649968)

77 (’anhwriuz ’, 929848795)

38 (’altwbhf ’, 227489830)

18 (’amjnt’, 17908687)

9 (’alzp’, 777721142)

4 (’amgotvrp ’, 908649465)

1 (’amjbv’, 506326306)

amir not found
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Binary Search, Iterative vs. Recursive
Lets put the two functions to the test of the clock.
>>> from students import *

>>> st_list = students (10**6) # names , id generated at random

>>> srt = sorted(st_list , key = lambda pair:pair [0])

>>>elapsed(’rec_slice_binary_search (" not_student",srt)’,number =1)

0.07140300000000366

>>>elapsed(’rec_slice_binary_search (" not_student",srt)’,number =100)

6.905284999999992

>>>elapsed(’binary_search ("not a student",srt)’,number =200000)

6.1674890000000175

>>>srt [5*10**5+1][0]

’nad’

>>>elapsed(’rec_slice_binary_search ("nad",srt)’,number =1)

0.06951200000000313

>>>elapsed(’binary_search ("nad",srt)’,number =2000)

0.06343100000000845

So the iterative version is approximately 2000 times faster than the
recursive, sliced version (both for existing and non existing keys).

Food for thought: Why? What is the complexity of the sliced
recursive version? Hint: Each slicing allocates new memory locations.16 / 39



Binary Search w/wo slicing - complexity analysis

On the board.

The essential ingredient is the complexity of a single step in the sliced
vs. un-sliced versions.
And the number of iterations. Note that the latter ingredient alone
does not suffice.

Next class, we will refine this analysis, using recursion trees.

17 / 39



Envelope functions for recursion

So slicing may be problematic, complexity wise.

On the other hand, the recursive version without slicing used two
additional parameters (left and right indices).
This is against a fundamental ”rule” in computational problem
solving: the user should be required to give only the arguments of the
problem, and should not be bothered with additional ones, related to
the way the problem is solved.

The common way to sort this out, is to use envelope functions,
whose role is to ”set the stage” for the ”real” recursive functions:

def binary_search2(key , lst):

""" calls recursive binary search

lst better be sorted for binary search to work """

return rec_binary_search(key , lst , 0, len(lst)-1)

18 / 39



Envelope functions for recursion

def binary_search2(key , lst):

""" calls recursive binary search

lst better be sorted for binary search to work """

return rec_binary_search(key , lst , 0, len(lst)-1)

def rec_binary_search(key , lst , left , right ):

""" recursive binary search.

passing lower and upper indices """

if left >right:

return None

middle = (left+right )//2

if key == lst[middle ][0]:

return lst[middle]

elif key < lst[middle ][0]: # item cannot be in top half

return rec_binary_search(key , lst , left , middle -1)

else: # item cannot be in bottom half

return rec_binary_search(key , lst , middle+1, right)
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Sort and Search

As we saw, binary search requires preprocessing – sorting.

We will introduce one approach to sorting (out of very many).

This approach, quicksort, employs both randomization and recursion.

(Contents include Game Board, 6 Moving Pieces, 6 Tile Holders, 30 Colored Tiles, Over 300 Topic Cards,

Sand Timer & Instructions. For 2 to 6 players, ages 12 & up.)
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Quicksort

Our input is an unsorted list, say
[28, 12, 32, 27, 10, 12, 44, 20, 26, 6, 20, 21].
We choose a pivot element, simply one of the elements in the list.

For example, suppose we chose 20 (the second occurance). We now
compare all elements in the list to the pivot. We create three new
lists, termed smaller, equal, greater. Each element from the
original list is placed in exactly one of these three lists, depending on
its size with respect to the pivot.

smaller = [12, 10, 12, 6].
equal = [20, 20].
greater = [28, 32, 27, 44, 26, 21].

Note that the equal list contains at least one element, and that both
smaller and greater is strictly shorter than the original list.
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Quicksort (cont.)

What do we do next? We recursively sort smaller and greater,
and then we append the three lists, in order (recall that in Python +

means append for lists).

Note that equal need not be sorted.

return quicksort(smaller) + equal + quicksort(greater)

quicksort(smaller) = [6, 10, 12, 12].
equal = [20, 20].
quicksort(greater) = [21, 26, 27, 28, 32, 44].

Final result:
[6, 10, 12, 12] + [20, 20] + [21, 26, 27, 28, 32, 44]

= [6, 10, 12, 12, 20, 20, 21, 26, 27, 28, 32, 44].

(Original list was

[28, 12, 32, 27, 10, 12, 44, 20, 26, 6, 20, 21].)
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Quicksort: A Graphical Depiction

(Figure curtesy of Amir Rubinstein.)
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Quicksort: Python Code

import random # a package for (pseudo) random generation

def quicksort(lst):

if len(lst)<=1: # empty lists or length one lists

return lst

else:

pivot = random.choice(lst)

# select a random element from the list

smaller = [elem for elem in lst if elem < pivot]

equal = [elem for elem in lst if elem == pivot]

greater = [elem for elem in lst if elem > pivot]

# ain’t these selections neat?

return quicksort(smaller) + equal + quicksort(greater)

# two recursive calls
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List Comprehension, Efficiency, and Correctness

The creation of new lists from an existing one, as done above, is
generally known as list comprehension. It provides a very convenient
mechanism for writing code, and Python is extremely good at it.

This convenience is good for quickly developing code. It also helps to
develop correct code. But this simplicity and elegance do not
necessarily imply an efficient execution.

For example, our quicksort algorithm goes three times over the
original list. Furthermore, it allocates new memory for the three
sublists. There are versions of quicksort that swap original list
elements, go over the list only once, and reuse the same memory.
They are more efficient, yet more error prone and generally take
longer to develop.

Eventually you will choose, on a case by case basis, which style of
programming to use.
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Quicksort: Convergence and Correctness

Base cases: If the list is either empty or of length one, we do not
recurse but return the list itself (in both cases, such lists are sorted).

Convergence: Each time we make a recursive call, its argument
(either smaller or greater) is strictly shorter than the current list).
When the length hits zero or one, we are at a base case. Thus the
quicksort algorithm always converges (no infinite executions).

Correctness: An inductive argument. If smaller and greater are
sorted, then
quicksort(smaller) + equal + quicksort(larger)

is a sorted list. Its elements are the same as the original list
(multiplicities included), so the outcome is the original list, sorted. ♠
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Quicksort: Pivot Selection

We could take the element with the first, last, or middle index in the
list as the pivot. This removes the randomness aspect from quicksort,
and makes it deterministic. This version would usually work well
(assuming some random distribution of input lists). However, in some
cases (e.g. if the input list is already sorted or close to sorted, and
the pivot is the first or last element) this choice would lead to poor
performance (even though the algorithm will always converge):

The worst case running time to sort a list of n elements occurs if at
each invocation of the function, we choose either the minimum
element as the pivot, or the maximum element. This makes either
smaller or greater to be an empty list.

The resulting run time is O(n2). This follows from the solution to
the recurrence relation WCT(n)= (n− 1) + WCT(n− 1) (to be
explained and solved on the board, using recursion trees).
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Quicksort: Pivot Selection, cont.

We could take the element with the first, last, or middle index in the
list as the pivot. This removes the randomness aspect from quicksort
and makes it deterministic. This version would usually work well
(assuming some random distribution of input lists). However, in some
cases (e.g. if the input list is already sorted or close to sorted, and
the pivot is the first or last element) this choice would lead to poor
performance (even though the algorithm will always converge).

Instead of such fixed, deterministic choice, the recommended solution
is choosing the pivot at random. With high probability, the randomly
chosen pivot will be neither too close to the minimum nor too close
to the maximum. This implies that both smaller and greater are
substantially shorter than the original list, and yields good
performance with high probability. (At this point this is an intuitive
claim, nothing rigorous.)
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Quicksort: Asymptotic Run Time Analysis

Instead of a fixed, deterministic choice, the recommended solution is
choosing the pivot at random. With high probability, the randomly
chosen pivot will be neither too close to the minimum nor too close
to the maximum. This implies that both smaller and greater are
substantially shorter than the original list, and yields good
performance with high probability.

It can be shown that the best case and the average case running
times to sort a list of n elements are both O(n · log n) (the “best
case” constant in the big O notation is slightly smaller than the
“average case” constant).
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Quicksort: Run Time (best case and average)

The best case occurs if we are lucky at each invocation of the
function, and pivot is the median, splitting the list to two equal parts
(up to one, if number of list elements is even). The best case run
time satisfies the recurrence relation BCT(n)=(n− 1) + 2·BCT(n/2).

Complexity analysis for the best case: on the board. Recursion tree
will be shown during next class.

A slightly more complicated expression can be written for ACT(n),
the average case running time. (Rigorous analysis is deferred to the
data structures course.)

In the rec slice binary search function, slicing resulted in O(n)
overhead to the time complexity, which is disastrous for searching.
Here, however, we deal with sorting, and an O(n) overhead is
completely OK.
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Running Quicksort

def ordlist(n):

""" generates an ordered list [0,-1,...,-(n-2),-(n-1)] """

return [-i for i in range(0,n)]

import random

def randlist(n):

""" generates a list of n random elements from [0,...,n**2] """

return [random.randint(0,n**2) for i in range(0,n)]

import time

print("Test for an ordered list")

for func in [det_quicksort , quicksort ]:

print(func.__name__)

for n in [200, 400, 800]: #recall the recursion limit of 1000

print("n=", n, end=" ")

olst = ordlist(n)

t0 = time.clock()

for i in range (100):

func(olst) #sort is not inplace , lst remains unchanged

t1 = time.clock()

print(t1-t0) 31 / 39



Running Quicksort

print("\n\nTest for a random list")

for func in [det_quicksort , quicksort ]:

print(func.__name__)

for n in [200, 400, 800]:

print("n=", n, end=" ")

rlst = randlist(n)

t0 = time.clock()

for i in range (100):

func(rlst) #sort is not inplace , lst remains unchanged

t1 = time.clock()

print(t1-t0)
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Running Quicksort
Test for an ordered list

det_quicksort

200 1.03312184

400 3.99165228

800 15.13556724 #feels quadratic , doesn ’t it?

quicksort

200 0.18001471999999907

400 0.3872873599999984

800 0.805047639999998 #"almost linear"

#fits the theoretic bound of O(nlogn)

Test for a random list #now both should be O(nlogn)

det_quicksort

200 0.1380252399999975

400 0.291556240000002

800 0.6495146399999996

quicksort

200 0.17874596000000054

400 0.38415788000000006

800 0.8173716400000011

Can you explain why for random lists the deterministic QS is slightly
better?
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Quicksort: Closing Remarks

We could further explore and expand upon quicksort:

I Our code allocates additional memory during every recursive
call. There are iterative versions that operate in place.

I Add code for tracking total number of recursive calls in a run.

I Other pivot selection strategies (e.g. median of three random
elements).

I Performance issues: Random vs. sorted inputs.

I Performance issues when sorting huge files.

You may have a chance to look into these issues in your home
assignments.

34 / 39



Merge Sort

Mergesort is a recursive, deterministic, sorting algorithm. It follows a
divide and conquer approach. An input list (unsorted) is split to two
– elements with indices from 0 up to the middle, and those from the
middle up to the end of the list.

Each half is sorted recursively.

The two sorted halves are then merged to one, sorted list.
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Merge Sort, cont.

Suppose the input is the following list of length 13
[28, 12, 32, 27, 10, 12, 44, 20, 26, 6, 20, 21, 0].
We split the list in half, to
[28, 12, 32, 27, 10, 12] and [44, 20, 26, 6, 20, 21, 0].

And recursively sort the two smaller lists, resulting in
[10, 12, 12, 27, 28, 32] and [0, 6, 20, 20, 21, 26, 44].
We then merge the two lists, getting the final, sorted list
[0, 6, 10, 12, 12, 20, 20, 21, 26, 27, 28, 32, 44].

The key to the efficiency of merge sort is the fact that merging two
lists is done in time O(length of first list + length of second list).
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Merge: Python Code
The key to the efficiency of merge sort is the fact that merging two
lists is done in time O(length of first list + length of second list), by
a simple two pointers algorithm

def merge(lst1 , lst2):

""" merging two ordered lists using

the two pointer algorithm """

n1 = len(lst1)

n2 = len(lst2)

lst3 = [0 for i in range(n1 + n2)] # alocates a new list

i = j = k = 0 # simultaneous assignment

while (i < n1 and j < n2):

if (lst1[i] <= lst2[j]):

lst3[k] = lst1[i]

i = i +1

else:

lst3[k] = lst2[j]

j = j + 1

k = k + 1 # incremented at each iteration

lst3[k:] = lst1[i:] + lst2[j:] # append remaining elements

return lst3
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Merge Sort: Python Code & Time Analysis

def mergesort(lst):

""" recursive mergesort """

n=len(lst)

if n <= 1:

return lst

else:

return merge(mergesort(lst[0:n//2]), mergesort(lst[n//2:n]))

#two recursive calls

The runtime of mergesort on lists with n elements satisfies the
recurrence relation T (n) = c · n+ 2 · T (n/2) , where c is a constant.
The solution to this relation is T (n) = O(n · log n).
Question: Is the last statement true for the worst or for the best case?

In the rec slice binary search function, slicing resulted in O(n)
overhead to the time complexity, which is disastrous for searching.
Here, however, we deal with sorting, and an O(n) overhead is
completely OK.
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A Three Way Race

Three sorting algorithms left Haifa at 8am, heading south. Which
one will get to TAU first?
We will run them on random lists of lengths 200, 400, 800.

>>> from quicksort import *

>>> from mergesort import *

3 way race

quicksort

n= 200 0.17896895999999998

n= 400 0.38452376

n= 800 0.87327308

mergesort

n= 200 0.24297283999999997

n= 400 0.49345808000000013

n= 800 1.0856526

sorted #Python ’s sort

n= 200 0.007834879999999877

n= 400 0.02002811999999965

n= 800 0.04940151999999998 #We have a winner!

The results, ahhhm, speak for themselves.

39 / 39


