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Lecture 4: Highlights

• More on functions
• Tuples and lists.
• Multiple values returned by functions.
• Side effects of function execution.
• Natural numbers: 

• Unary vs. binary representation.
• Representation in different base binary, decimal, 
octal, hexadecimal, 31, etc.).
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This concludes the first part of the course: 
Python basics and number representation.

The next part is
Basic Algorithms and their efficiency
We will present algorithms on numbers 
(Integer Exponentiation), and on general data 
(searching)
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Lecture 5: Plan

• Integer exponentiation: Naive algorithm (inefficient).
• Integer exponentiation: Iterated squaring algorithm 
(efficient).
• Modular exponentiation.

• Searching in unordered lists and in ordered lists.
• Sequential search vs. binary search.
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Integer Exponentiation
How do we compute ab, where a, b ≥  2 are both 
integers?
>>> for i in range (2 ,20):

print (17** i)
289
4913
83521
1419857
24137569
410338673
6975757441
118587876497
2015993900449

5

34271896307633
582622237229761
9904578032905937
168377826559400929
2862423051509815793
48661191875666868481
827240261886336764177
14063084452067724991009
239072435685151324847153

(continue)



Integer Exponentiation: Naive Method
How do we compute ab, where a,b ≥ 2 are both integers?
The naive method: Compute successive powers a, a2, a3, …., ab.
Starting with a, this takes b - 1 multiplications, which is exponential in the 
length of b, which is 

For example, if b is 20 bits long, say b = 220 -17, such procedure takes               
b -1  =  220 -18 = 1048558 multiplications.

If b is 1000 bits long, say b = 21000 - 17, such procedure takes b  = 21000 -18 
multiplications.  In decimal, 21000 -18 is
1071508607186267320948425049060001810561404811705533607443750
3883703510511249361224931983788156958581275946729175531468251
8714528569231404359845775746985748039345677748242309854210746
0506237114187795418215304647498358194126739876755916554394607
7062914571196477686542167660429831652624386837205668069358.

A 1000 bits long input is not very large.
Yet such computation is completely infeasible. 6

  1log2 +b



Integer Exponentiation: 
Naive Method, Python Code

def naive_power (a,b):
"""  computes a**b using all successive powers

assumes b is a nonnegative integer """ 
result =1
for i in range (0,b):           # b iterations

result = result *a
return result

Let us now run this on a few cases:
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Integer Exponentiation: 
Naive Method, running the Python Code

>>> naive_power (3 ,0)
1
>>> naive_power (3 ,2)
9
>>> naive_power (3 ,10)
59049
>>> naive_power (3 ,100)
515377520732011331036461129765621272702107522001
>>> naive_power (3 , -10)
1

Take a look at the code and see if you understand it, and 
specifically why raising 3 to -10 returned 1.
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More Efficient Integer Exponentiation: 
A Concrete Example

Suppose we want to compute a67. We represent 67 as a sum of 
powers of 2 (this representation is unique, and corresponds to 
the binary representation of 67 = 1 + 2 + 64 ,  1000011)
We first compute a2; a4; a8; a16; a32; a64. Each additional 
squaring takes just one multiplication (eg. a64  = a32 ∙ a32 ). So 
overall, computing all these six exponents takes just 6
multiplications.
Next, we note that a67 = a64+2+1 = a64 ∙ a2 ∙ a1. So to compute 
a67, once we have all the powers             takes 2 additional 
multiplications.
All in all, we need just 6+2=8 multiplications. Way better than 
the 67-1=66 multiplications of the naive method.
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Efficient Integer Exponentiation: 
general observations (1)

Let  2 l-1 ≤  b < 2 l for some l, so the binary 
representation of b has exactly                             bits.
So Instead of computing all successive powers of a, 

namely
we can compute just successive powers of two powers 
of a, namely

To accomplish this, observe that 
So we start with a1 = a, and iterate squaring of the last 
outcome to compute all the needed powers . Observe 
that squaring is just one multiplication.
How do we compute the desired power ab?10

2 3, , ,..., ba a a a

a
l

aaaa ,..., 2 1
, 8, 4, 2 −

( )1
2

2 2i i
a a

+

=

  1log2 += bl



Efficient Integer Exponentiation: 
general observations (2)

Having computed 
We now want to combine them to the desired 
power, ab , employing the relations
and 
Let                         . The bi ‘s are simply the bits in 
the binary representation of b. Then

Thus we should accumulate only those powers 
that correspond to bits with value 1 in b
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Integer Exponentiation: 
Iterated Squaring

We will not implement the algorithm as is, but 
we will develop an algorithm that is based on 
the same observations, but does not explicitly 
use the binary representation.
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Integer Exponentiation: 
Iterated Squaring, Python Code

def power1(a,b):
""" computes a**b using iterated squaring

assumes b is a nonnegative integer   """
result=1
while b>0:

if b % 2 == 1:       #  b is odd
result = result*a
b = b-1

else:                     #  b is even
a=a*a
b = b//2        #

return result

13
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Integer Exponentiation: 
Iterated Squaring, running the Python Code

Let us now run this on a few cases:
>>> power1(3,4)
81
>>> power1(5,5)
3125
>>> power1(2,10)
1024
>>> power1(2,30)
1073741824
>>> power1(2,100)
1267650600228229401496703205376
>>> power1(2,-100)
1
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Integer Exponentiation: Iterated Squaring,
correctness of the Python Code

We can prove  the correctness of the function, by showing a loop 
invariant – a condition that holds each time we are about to check 
the loop condition.
Denote the arguments to the function by A, B (to distinguish from 
the changing values a, b). 
We claim that each time we are about to check the loop 
condition, the following condition holds:
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ABabresult =⋅
First, lets check it by adding printing to the code:
…
while b>0:

print( "result = “,result," a = “, a," b = “ ,b,
" result*(a**b)= “, result*a**b)

if b % 2 == 1:
…..



Integer Exponentiation: Iterated Squaring,
correctness of the Python Code (cont.)

When we run  
>>> power1(3,11)
result =  1  a =  3  b =  11  result*(a**b)=  177147
result =  3  a =  3  b =  10  result*(a**b)=  177147
result =  3  a =  9  b =  5  result*(a**b)=  177147
result =  27  a =  9  b =  4  result*(a**b)=  177147
result =  27  a =  81  b =  2  result*(a**b)=  177147
result =  27  a =  6561  b =  1  result*(a**b)=  177147
177147

So at least in this example the condition holds every time!
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Integer Exponentiation: Iterated Squaring,
correctness of the Python Code (cont.)

Now we want to prove that this is indeed an invariant condition.
We need to show that it holds the first time we enter the loop.
Then show that if it holds before we check the loop condition, 
and we then execute the loop body once, the condition will hold 
again the next time.
And then we will have to show that if the condition holds the last 
time, (just before we exit the loop), then the function will return 
the correct value. 

17

The first time we enter, result=1, a=A, and b=B, so the condition 
is true.

ABabresult =⋅



Integer Exponentiation: Iterated Squaring,
correctness of the Python Code (cont.)
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'result result a= ⋅

ABabresultabaresulta bresult =⋅=−⋅⋅=⋅ 1' ''so

Now execute the loop body once. The values of the variables 
change ( ‘ denote the value after).  There are two possibilities:
If b is odd, then

' 1b b= −
'a a=

The code:

if b % 2 == 1: 
result = result*a
b = b-1unchanged

Substitute 
the values

Was known 
before 

So the condition remains true after executing the loop body. 



Integer Exponentiation: Iterated Squaring,
correctness of the Python Code (cont.)

19

'result result=

so

The second possibility when we execute the loop body once:
If b is even, then

The code:

else
a=a*a
b = b//2 

unchanged

Substitute 
the values

Was known 
before 

So the condition remains true after executing the loop body. 

' / 2b b=
2'a a=

' 2 ( / 2)' 'b b b Bresult result resulta a a A⋅⋅ = ⋅ = ⋅ =

since b is even 
2∙(b/2) =b 



Integer Exponentiation: Iterated Squaring,
correctness of the Python Code (cont.)
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resultaresultabresultAB =⋅=⋅= 0

So in both cases, the invariant condition remains true after each 
execution of the loop body. 

AB

QED

The 
invariant 
holds

Substitute 
the value

Then, when the loop terminates,  b=0 (why?)

so

So we showed that the function returns the desired value

We can also see that the loop terminates, because b is 
reduced in each execution of the loop body 



Correctness of Code
In general, it is not easy to design correct code. It is even 
harder to prove that a given piece of code is correct (namely 
it meets its specifications).
In the course, we will see a couple more examples of program 
correctness, using the same technique of loop invariants. (You 
will not be expected to prove correctness in this way.)
However, in most cases you will have to rely on your 
understanding, intuition, test cases, and informative prints to 
convince yourselves that the code you wrote is indeed
hopefully correct.
Finally, we remark that software and hardware verification 
are major issues in the corresponding industries. Elective 
courses on these topics are being offered at TAU (and 
elsewhere).21



Iterated Squaring, improving the Code 

def                (a,b): 
result=1 
    while b         : 
            if b % 2 == 1: 
                result = result*a 
                 
             
                 
                 
    return result 

 b = b-1 
 else: 

 a=a*a 
 b = b//2 

 > 0 

 power1 
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    while b         : 
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                result = result*a 
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 > 0 
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If b is odd, it becomes 
even. so no need to test 
again if b is odd or even. 

 power1 
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Iterated Squaring, improving the Code:
explanation

Note that when b is odd, the next time it will be even. So we 
don’t have to test again if b is odd or even. This makes the 
code more compact (and saves some of the tests, but the 
number of multiplications is unchanged).

We also don’t have to decrement b, because b //2 will give 
the correct result also for the odd b. ( eg. 7//2 == 3)

Another change is to use the fact that python allows us to put 
a numeric expression where a boolean expression is expected 
(for example as while loop expression). Any numeric result not 
equal to 0 is treated as True. Is it good style? certainly 
common among python (and other languages)  programmers.
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Integer Exponentiation: 
Iterated Squaring, improved Python Code
def power(a,b):

""" computes a**b using iterated squaring 
assumes b is a nonnegative integer   """

result=1
while b > 0 :                 # b is nonzero

if b % 2 == 1:    #  b is odd
result = result*a

a=a*a
b = b//2

return result

24

Note that the computation of a and b the 
last time the loop body is executed are not 
needed (and do not affect the result)



The Two Types of Time Complexity 
Analysis

1) Mathematical analysis:
• Analyzing the number of operations exactly.
• Analyzing the number of operations approximately (up to
• constants) and asymptotically (we will do this a lot in the 

future).
• Caveat: When faced with a concrete task on a specific problem 

size, you may be far away from “the asymptotic”.

2) Direct measurements of the actual running time:
• For direct measurements, we will use either the time package 
and the time.clock() function.
• Or the timeit package and the timeit.timeit() function.
• Both have some deficiencies, yet are highly useful for our needs.25



Running Time Analysis: 
Naive vs. Iterated Squaring

We saw that the naïve algorithm makes an 
exponential number of multiplications.
The analysis of the number of multiplications 
performed by the iterated squaring algorithms 
is left for the homework.
We will now measure the actual running time 
directly.

26



Direct Time Measurement, Using 
time.clock()

The function elapsed measures the CPU time taken to execute 
the given expression (given as a string). Returns a result in 
seconds. Note that the code first imports the time module.
import time        # imports the Python time module

def elapsed (expression, number =1):
''' computes elapsed time for executing code number times 
(default is 1 time). expression should be a string representing a 
Python expression.'''
t1= time.clock ()
for i in range (number):

eval (expression)         # eval invokes the interpreter
t2= time . clock ()
return t2 -t1

27



Direct Time Measurement, Using 
time.clock()

From the edit window with the file containing elapsed, 
we hit the F5 button or choose run => run module

Examples:
>>> elapsed (" sum ( range (10**7)) ")
0.33300399999999897
>>> elapsed (" sum ( range (10**8)) ")
3.362785999999998
>>> elapsed (" sum ( range (10**9)) ")
34.029920000000004

28



Reality Show: Naive Squaring vs. Iterated 
Squaring

Actual Running Time Analysis:
We'll measure the time needed (in seconds) for computing 3 raised to the 
powers  2 ∙ 105 , 106 , 2 ∙ 106 using the two algorithms.
>>> from power import *                         # Note!!
>>> elapsed (" naive_power (3 ,200000) ")
2.244201
>>> elapsed (" power (3 ,200000) ")
0.03179299999999996
>>> elapsed (" naive_power (3 ,1000000) ")
57.696312999999996
>>> elapsed (" power (3 ,1000000) ")
0.3366879999999952
>>> elapsed (" naive_power (3 ,2000000) ")
205.56775500000003
>>> elapsed (" power (3 ,2000000) ")
1.0069569999999999

29

Iterated squaring wins 
(big time)!



Comment about time.clock()

The python documentation for time.clock() states 
that it is

Deprecated since version 3.3: The behaviour of this 
function depends on the platform: use perf_counter() or 
process_time() instead, depending on your requirements, 
to have a well defined behaviour.

Deprecated means: advice not to use it in new code 
written, but it is not removed from the language, so 
that old code does not stop functioning.
The reason – it measures different “time” on 
different systems: processor time vs. wall-clock 
time.
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Wait a Minute
Using iterated squaring, we can compute ab for any a and, say,
b = 2100 - 17 (= 1267650600228229401496703205359). This will take 
less than 200 multiplications, a piece of cake even for an old, 
faltering machine.
A piece of cake? Really? 200 multiplications of what size numbers?
For any integer a other then 0 or 1, the result of the exponentiation 
above is over 299 bits long. No machine could generate, manipulate, 
or store such huge numbers.
Can anything be done? Not really!
Unless you are ready to consider a closely related problem:
Modular exponentiation: Compute ab mod c, where a, b, c ≥ 2 are all 
integers. This is the remainder of ab when divided by c. In Python, 
this can be expressed as (a**b) % c.
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Modular Exponentiation
We should still be a bit careful. Computing ab first, and 
then taking the remainder mod c, is not going to help 
at all.
Instead, we compute all the successive squares mod c, 
namely a1 mod c, a2 mod c, a4 mod c (and any other 
power that is needed).
In fact, following every multiplication, we compute the 
remainder. We rely on the fact that for all a, b, c :
((a mod c) ∙ (b mod c)) mod c = (a ∙ b) mod c.
This way, intermediate results never exceed c2, 
eliminating the problem of huge numbers.
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Modular Exponentiation in Python
We can easily modify our function, power, to handle modular 
exponentiation.

def modpower(a,b,c):
""" computes a**b modulo c, using iterated squaring 

assumes b is a nonnegative integer   """
result=1
while b>0:                     # while b is nonzero

if b % 2 == 1:      # b is odd
result = (result * a) % c

a= (a*a) % c
b = b//2

return result
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Modular Exponentiation in Python
A few test cases:
>>> modpower(2,10,100) # sanity check: 210 = 1024
24
>>> modpower(17,2**100+3**50,5**100+2)
35687281774687321935823285101098493089577506827
33818418319936978305748
>>> 5**100+2 # the modulus, in case you are curious
788860905221011805411728565282786229673206435109
0230047702789306640627
>>> modpower(17,2**1000+3**500,5**100+2)
111988745112515980211913884214590356797395628235
6934957211106448264630
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Built In Modular Exponentiation: pow(a,b,c)
Guido van Rossum has not waited for our code, and Python has a
built in function, pow(a,b,c), for efficiently computing ab mod c.
>>> modpower (17 ,2**1000+3**500 ,5**100+2)\ # line continuation

- pow (17 ,2**1000+3**500 ,5**100+2)
0
# Comforting : modpower code and Python pow agree . Phew ...
>>> elapsed (" modpower (17 ,2**1000+3**500 ,5**100+2) ")
0.00263599999999542
>>> elapsed (" modpower (17 ,2**1000+3**500 ,5**100+2) ",number 
=1000)
2.280894000000046
>>> elapsed (" pow (17 ,2**1000+3**500 ,5**100+2) ",number 
=1000)
0.7453199999999924
So our code is just three times slower than pow.

35



Does Modular Exponentiation Have 
Any Uses?

Applications using modular exponentiation directly (partial list):

• Randomized primality testing.
• Diffie Hellman Key Exchange
• Rivest-Shamir-Adelman (RSA) public key cryptosystem (PKC)

We will discuss the first two topics later in this course, and leave 
RSA PKC to an (elective) crypto course.

36



Search
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Search
Search has always been a central computational task.  In early 
days, search supposedly took one quarter of all computing time.
The emergence and the popularization of the world wide web 
has literally created a universe of data, and with it the need to 
pinpoint information in this universe.
Various search engines have emerged, to cope with this 
challenge. They constantly collect data on the web, organize it, 
index it, and store it in sophisticated data structures that support 
efficient (fast) access, resilience to failures, frequent updates, 
including deletions, etc., etc.
In this class we will deal with two much simpler data structures 
that support search:
• unordered list
• ordered list

38



Representing Items in a List
We are about to study search. Assume our data is arranged in a 
list. Recall that in Python, a list with n elements is simply a 
mapping from the set of indices, {0, … , n-1}, to a set of items.
In our context, we assume that items are records having a fixed 
number of information fields. For example, our Student items will 
include two fields each: name, identity number.
We will arrange each item as a list with two entries 
(corresponding to the example above).
We note that this is cumbersome and will not scale up easily. How 
would one remember that entry 19 corresponds to weight, and 
entry 17 corresponds to height?
Indeed, we will later introduce classes and object oriented 
programming for a slicker representation of such records.
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Representing Students' Records
in a List

The following list was generated manually from the 109 strong 
list of students in a previous year class. To protect their 
privacy, only first names are given (hopefully spelled 
correctly), and their id numbers were generated at random.
(Bear this in mind when you apply to get your new biometric 
ID card.)
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Representing Students' Record
in a List (cont)

import random
names =["Or","Yana","Amir","Roee","Noa","Gal","Barak",

"Rina","Tal","Lielle","Shady","Yuval"]
students_list =[[ name , random.randint (2*10**7 ,6*10**7)] \

for name in names ]     # leading digits are 2 ,3 ,4 ,5
>>> print (students_list )
[[ 'Or', 28534293] , ['Yana', 45929500] , ['Amir', 37076235] ,
['Roee', 55421212] , ['Noa', 46931670] , ['Gal', 55522009] ,
['Barak', 22162470] , ['Rina', 25310060] , ['Tal', 23374569] ,
['Lielle', 26549109] , ['Shady', 34859880] , ['Yuval', 28714343]]
>>> len ( students_list )
12
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Searching the List
We are now interested in searching the list. For example, we 
want to know if a student called Yuval is in the list, and if so, 
what is his/her ID number. In this example, the student's name 
we look for is viewed as the key, and the associated ID is the 
value we are interested in.
With such an unordered list, we have no choice but to search 
for items sequentially, one by one, in some order. For example, 
by going over the list from the first entry, students_list[0], to 
the last entry, students_list[11].
What is the best case running time of sequential search? 
Worst case running time?

Food for thought:  Would it be better to sample items at 
random? (think of best, worst, and average cases).
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Sequential Searching: Code
def sequential_search (key , lst ):

""" sequential search from lst [0] till last lst element
lst need not be sorted for sequential search to work """
for elem in lst :

if elem [0]== key :
return elem

# we get here when the key is not in the list
print (key , "not found" )      # For debugging purposes!
return None
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Searching backwards : Code
def sequential_search_back (key , lst ):

""" sequential search from last lst element to first element
lst need not be sorted for sequential search to work """
for elem in lst [:: -1]:   # goes over elements in reversed lst

if elem [0]== key :
return elem

# we get here when the key is not in the list
print (key , "not found" )
return None

Is this list reversing a good idea? Think what will happen to the
worst and best case inputs. If not, how would you fix this?
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Searching the Short List
>>> sequential_search ("Or", students_list )
['Or ', 28534293]
>>> sequential_search ("Benny", students_list )
Benny not found
>>> sequential_search_back ("Shady", students_list )
['Shady ', 34859880]
>>> sequential_search ("Shady", students_list )
['Shady ', 34859880]
>>> sequential_search_back (8, students_list )
8 not found

Question: What keys cause worst case running time for both
forward and backward sequential searches?
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Sequential Search: Time Analysis

Any sequential search in an unordered list goes over 
it, item by item. If the list is of length n, sequential 
search will take n steps in the worst case (when the 
item is not found because it is missing).
For our exclusive (thus short) list of students, n steps 
is not a problem. But if n is very large, such a search 
will take very long.
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Search in Unordered vs. Ordered Lists

Hands on experience: Searching for a word in a book vs. 
searching for it in a dictionary.
(We mean a real world, hard copy, dictionary, not Python's 
dict, which we soon will get familiar with!)
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Sequential vs. Binary Search
For unordered lists of length n, in the worst case, a search 
operation compares the key to all list items, namely n
comparisons.
On the other hand, if the n element list is sorted, search can be 
performed much faster. We first compare input key to the key of 
the list's middle element, an element whose index is 
• If the input key equals the middle element's key, we return 
the  middle element and terminate.
• If the input key is greater than the middle element's key, we 
can restrict our search to the top half of the list (indices from

to n-1
• If the input key is smaller than the middle element's key, we 
can restrict our search to the bottom half of the list (indices 
from 0 to

48
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Binary Search, cont.
Starting with an ordered list with n elements, we will initialize 
three indices:
left=0, right=n-1, middle=(n-1)//2.
We compare the values at the middle index to the key.
If equal – we found an item equal to the key, and return its index.
If key is smaller than middle element – we assign the value of right
to the variable middle. Update middle, and iterate.
If key is larger than middle element – we assign the value of left to
the variable middle. Update middle, and iterate.
We announce that the key was not found if right becomes smaller
than left.
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Binary Search: Python Code
def binary_search (key , lst ):

""" iterative binary search. lst must be sorted """
n= len ( lst )
left =0
right =n -1
outcome = None               # default value
while left <= right :

middle =( right + left )//2
if key == lst [ middle ][0]:                 # item found

outcome =lst [ middle ]
break                          # gets out of the loop if key was found

elif key < lst [ middle ][0]:               # item cannot be in top half
right =middle -1

else :                                            # item cannot be in bottom half
left = middle +1

if not outcome :                    # holds when the key is not in the list
print (key , "not found")

return outcome50



Animated Example

For simplicity, the entries in our list will be 
plain integers (not lists).
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Animated Example: Searching for the Existing Item, 18§

§artwork by an AR (anonymous researcher)
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Animated Example: Searching for the Existing Item, 18¶

A[mid] = 22 > 18

¶artwork by an AR (anonymous researcher)
42 / 62



Animated Example: Searching for the Existing Item, 18‖

A[mid] = 9 < 18

‖artwork by an AR (anonymous researcher)
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Animated Example: Searching for the Existing Item, 18∗∗

A[mid] = 16 < 18

∗∗artwork by an AR (anonymous researcher)
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Animated Example: Searching for the Existing Item, 18††

A[mid] = 18 = 18. Item found.

††artwork by an AR (anonymous researcher)
45 / 62



Animated Example: Searching for a Non Existing Item, 17

46 / 62



Animated Example: Searching for a Non Existing Item, 17

A[mid] = 22 > 17

47 / 62



Animated Example: Searching for a Non Existing Item, 17

A[mid] = 9 < 17
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Animated Example: Searching for a Non Existing Item, 17

A[mid] = 16 < 17
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Animated Example: Searching for a Non Existing Item, 17

A[mid] = 18 > 17.
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Animated Example: Searching for a Non Existing Item, 17

A[mid] = 18 > 17. Item not found.
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Time Analysis of Binary Search
At each stage, we either terminate or cut the size of the 
remaining list by half. Hence the name binary search.
• We start with an ordered list of length n.
• If n = 1, we compare the only item in the list to the key, and 
terminate.
• If n > 1, we either terminate in one step (if the key is found), 
or continue to look for the key in a list of length 
• In each iteration we perform one comparison, and cut the 
length by one half, till the length reaches n = 1.
• The number of times we can halve n till we reach 1 is                                              

• So the running time of binary search is proportional to  log2 n. 
For large n, it is much faster than the n steps of sequential 
search.
• Binary search requires preprocessing: The list must be sorted.54

 2/n

2 2
( ) ( ) 1log logn n  + ≤



Binary Search: Preprocessing
As a sanity check, we first run the code on the small students list 
of length 12, used above to test the sequential search code.
>>> print ( students_list )
[[ 'Or', 28534293] , ['Yana', 45929500] , ['Amir', 37076235] ,
['Roee', 55421212] , ['Noa', 46931670] , ['Gal', 55522009] ,
['Barak', 22162470] , ['Rina', 25310060] , ['Tal', 23374569] ,
['Lielle', 26549109] , ['Shady', 34859880] , ['Yuval', 28714343]]

To apply binary search, we better sort the list first. We want to 
sort the items by their names. We employ a built-in sorting 
function, sorted, and tell it to use the name as the key, employing 
a lambda expression: key = lambda elem : elem[0].
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Binary Search: Preprocessing, cont.
>>> sorted_list = sorted (students_list, 

key = lambda elem : elem [0])
# sorting students_list by the names
>>> sorted_list
[[ 'Amir', 37076235] , ['Barak', 22162470] , ['Gal', 55522009] ,
['Lielle', 26549109] , ['Noa', 46931670] , ['Or', 28534293] ,
['Rina', 25310060] , ['Roee', 55421212] , ['Shady', 34859880] ,
['Tal', 23374569] , ['Yana', 45929500] , ['Yuval', 28714343]]

(Lambda expressions will be discussed in the course soon, and 
we will then explain how this works)
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Binary Search: Running the Code
>>> binary_search ("Or", sorted_list)
['Or ', 28534293]
>>> binary_search ("Shady", sorted_list )
['Shady ', 34859880]
>>> binary_search ("Benny", sorted_list)
Benny not found
What happens if we run binary search on an unsorted list?
>>> binary_search ("Or", students_list )
Or not found
This should not come as a surprise.
The running time of sequential and binary search for short lists 
(e.g. of length 12, namely 1 + log2(12) = 4 vs. 12) are not easy to 
tell apart.
The Difference is distinguishable when considering longer lists, 
e.g. of length n = 106 = 1, 000, 000.
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Sequential and Binary Search: 
Timing the Code on Long Lists

We could have based our list on the leaked Israeli population 
registry. However, to avoid potential legal troubles, the names 
and identity numbers were generated completely at random 
(details later).
>>> large_stud_list = students (10**6)
>>> large_stud_list [5*10**5+3]
['Rlne Qmgedu', 39925262]

For the binary search, we sort the list
>>> large_sorted_list = sorted ( large_stud_list ,

key = lambda elem : elem [0])
>>> large_sorted_list [5*10**5+3]
['Naq Tbsc', 58042807]
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Sequential Search: 
Timing the Code on Long Lists

>>> sequential_search ('Rlne Qmgedu', large_stud_list )
['Rlne Qmgedu ', 39925262]
>>> elapsed ("sequential_search('Rlne Qmgedu',

large_stud_list )", number =1000)
44.626914
>>> sequential_search ('Rajiv Gandhi', large_stud_list )
>>> elapsed (" sequential_search ('Rajiv Gandhi',

large_stud_list )", number =1000)
91.31152699999998
So, one thousand sequential searches in a 1, 000, 000 long list 
for an existing key (located around the middle of the list) took 
about 45 seconds, while a non-existing key took about 91 
seconds.
Note: print(key, "not found") was disabled. (Why?).
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Binary Search: 
Timing the Code on Long Lists

>>> binary_search ("Naq Tbsc", large_sorted_list )
['Naq Tbsc', 58042807]
>>> binary_search ("Rajiv Gandhi", large_sorted_list )
Rajiv Gandhi not found
>>> elapsed (" binary_search ('Naq Tbsc', large_stud_list )",
number =1000)
0.03165199999997981
>>> elapsed (" binary_search ('Rajiv Gandhi', large_stud_list )",
number =1000)
0.030768999999992275
So, one thousand binary searches in a 1, 000, 000 long list for 
both an existing and a non-existing item took about 0.03 seconds. 
This is 1,410 times faster than sequential search.
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Binary Search: A High Level View
Binary search is widely applicable (not only for searching a list). In
general, when we look for an item in a huge space, and that 
space is structured so we could tell if the item is
1. right at the middle,
2. in the top half of the space,
3. or in the lower half of the space.
In case (1), we solve the search problem in the current step. In 
cases (2) and (3), we deal with a search problem in a space of half 
the size.
In general, this process will thus converge in a number of steps 
which is log2 of the size of the initial search space. This makes a 
huge difference. Compare the performance of binary search to 
that of going sequentially over the original space, item by item.
Sometimes this algorithmic idea is call “A lion in the desert”.
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