
Computer Science 1001.py, Lecture 12:

Number Theoretic Algorithms:
Factoring Integers by Trial Division

Randomized Primality Testing
Diffie Hellman Public Exchange of Secret Key

Instructors: Amiram Yehudai, Amir Rubinstein
Teaching Assistants: Yael Baran, Michal Kleinbort

Founding Instructor: Benny Chor

School of Computer Science
Tel-Aviv University
Fall Semester, 2016

http://tau-cs1001-py.wikidot.com

http://tau-cs1001-py.wikidot.com/

Lecture 12: Plan

I Prime Numbers

• Trial division and its computational complexity.

• Modular exponentiation (reminder).

• Fermat’s little theorem. and Randomized primality testing.

I Cryptography:

• Secure communication over insecure communication lines

• The discrete logarithm problem

• One-way functions.

• Diffie-Hellman scheme for secret key exchange over insecure
communication lines.

2 / 67

Trial Division

Suppose we are given a large number, N , and we wish to find if it is
a prime or not.

If N is composite, then we can write N = KL where 1 < K,L < N .
This means that at least one of the two factors is ≤

√
N .

This observation leads to the following trial division algorithm for
factoring N (or declaring it is a prime):

Go over all D in the range 2 ≤ D ≤
√
N . For each such D, check if

it evenly divides N . If there is such divisor, N is a composite. If
there is none, N is a prime.

3 / 67

Trial Division

def trial_division(N):

""" trial division for integer N """

upper = round(N**0.5 + 0.5) # ceiling function of sqrt(N)

for m in range(2,upper +1):

if N % m == 0: # m divides N

print(m, "is the smallest divisor of", N)

return None

we get here if no divisor was found

print(N, "is prime")

return None

4 / 67

Trial Division: A Few Executions

Let us now run this on a few cases:

>>> trial_division (2**40+15)

1099511627791 is prime

>>> trial_division (2**40+19)

5 is the smallest divisor of 1099511627795

>>> trial_division (2**50+55)

1125899906842679 is prime

>>> trial_division (2**50+69)

123661 is the smallest divisor of 1125899906842693

>>> trial_division (2**55+9)

5737 is the smallest divisor of 36028797018963977

>>> trial_division (2**55+11)

36028797018963979 is prime

Seems very good, right?
Seems very good? Think again!

5 / 67

Trial Division Performance: Unary vs. Binary Thinking

This algorithm takes up to
√
N divisions in the worst case (it actually

may take more operations, as dividing long integers takes more than
a single step). Should we consider it efficient or inefficient?

Recall – efficiency (or lack thereof) is measured as a function of the
input length. Suppose N is n bits long. This means 2n−1 ≤ N < 2n.

What is
√
N in terms of n?

Since 2n−1 ≤ N < 2n, we have 2(n−1)/2 ≤
√
N < 2n/2.

So the number of operations performed by this trial division algorithm
is exponential in the input size, n. You would not like to run it for
N = 2321 + 17 (a perfectly reasonable number in crypto contexts).

So why did many of you say this algorithm is efficient? Because,
consciously or subconsciously, you were thinking in unary.

6 / 67

Computation Complexity for Integer Inputs: Clarification

• We measure running time (or computational complexity) as a
function of the input length.

• Input length is the number of bits in the representation of the
input in the computer.

• In the computer, integers are represented in binary, and certainly
not in unary.

• The number of bits in the representation of the positive integer
M is not M .

• The number of bits in the representation of the positive integer
M is blog2(M)c+ 1.

• For example, the representations of both 10 and 15 are
blog2(10)c+ 1 = blog2(15)c+ 1 = 3 + 1 = 4 bits long.

7 / 67

Computation Complexity for Integer Inputs, cont.

• We measure running time (or computational complexity) as a
function of the input length.

• Suppose the positive integer M is n bits long.

• And we designed an algorithm whose running time is
√
M .

• Is this a polynomial time algorithm?

8 / 67

Computation Complexity for Integer Inputs, cont.

• We measure running time (or computational complexity) as a
function of the input length.

• Suppose the positive integer M is n bits long.

• And we designed an algorithm whose running time is
√
M .

• Is this a polynomial time algorithm?

• No!, no!, and no!

• M is n bits long means 2n−1 ≤M ≤ 2n − 1.

• So 2(n−1)/2 ≤
√
M .

• 2(n−1)/2 is exponential in the input length, n. It is not
polynomial in n.

9 / 67

Trial Division Performance: Actual Measurements
Let us now measure actual performance on a few cases. We first run
the clock module (written by us), where the elapsed function is
defined. Then we import the trial division function.
>>> from division import trial_division

>>> elapsed("trial_division (2**40+19)")

5 is the smallest divisor of 1099511627795

0.002822999999999909

>>> elapsed("trial_division (2**40+15)")

1099511627791 is prime

0.16658700000000004

>>> elapsed("trial_division (2**50+69)")

123661 is the smallest divisor of 1125899906842693

0.022221999999999964

>>> elapsed("trial_division (2**50+55)")

1125899906842679 is prime

5.829111

>>> elapsed("trial_division (2**55+9)")

5737 is the smallest divisor of 36028797018963977

0.0035039999999995075

>>> elapsed("trial_division (2**55+11)")

36028797018963979 is prime

29.706794

10 / 67

Trial Division Performance: Food for Thought

Question: What are the best case and worst case inputs for the
trial division function, from the execution time (performance)
point of view?

11 / 67

Beyond Trial Division

Two possible directions:

• Find an efficient integer factoring algorithm.

I This is a major open problem. We will not try to solve it.

• Find an efficient primality testing algorithm.

I This is the road we will take.

12 / 67

Efficient Modular Exponentiation (reminder)

Goal: Compute ab mod c, where a, b, c ≥ 2 are all ` bit integers. In
Python, this can be expressed as (a**b) % c.
We should still be a bit careful. Computing ab first, and then taking
the remainder mod c, is not going to help at all.
Instead, we compute all the successive squares mod c, namely{
a1 mod c, a2 mod c, a4 mod c, a8 mod c, . . . , a2

`−1
mod c

}
.

Then we multiply the powers corresponding to in locations where
bi = 1. Following every multiplication, we compute the remainder.
This way, intermediate results never exceed c2, eliminating the
problem of huge numbers.

13 / 67

Efficient Modular Exponentiation: Complexity Analysis

Goal: Compute ab mod c, where a, b, c ≥ 2 are all ` bit integers.
Using iterated squaring, this takes between `− 1 and 2`− 1
multiplications.

Intermediate multiplicands never exceed c, so computing the product
(using the method perfected in elementary school) takes O(`2) bit
operations.

Each product is smaller than c2, which has at most 2` bits, and
computing the remainder of such product modulo c takes another
O(`2) bit operations (using long division, also studied in elementary
school).

All by all, computing ab mod c, where a, b, c ≥ 2 are all ` bit integers,
takes O(`3) bit operations.

14 / 67

Modular Exponentiation in Python (reminder)
We can easily modify our function, power, to handle modular
exponentiation.

def modpower(a,b,c):

""" computes a**b modulo c, using iterated squaring """

result=1

while b: # while b is nonzero

if b % 2 == 1: # b is odd

result = (result * a) % c

a=a**2 % c

b = b//2

return result

A few test cases:
>>> modpower(2,10,100) # sanity check: 210 = 1024
24

>>> modpower(17,2*100+3**50,5**100+2)

5351793675194342371425261996134510178101313817751032076908592339125933

>>> 5**100+2 # the modulus, in case you are curious

7888609052210118054117285652827862296732064351090230047702789306640627

>>> modpower(17,2**1000+3**500,5**100+2)

1119887451125159802119138842145903567973956282356934957211106448264630

15 / 67

Built In Modular Exponentiation – pow(a,b,c)

Guido van Rossum has not waited for our code, and Python has a
built in function, pow(a,b,c), for efficiently computing ab mod c.

>>> modpower (17 ,2**1000+3**500 ,5**100+2)\ # line continuation

-pow (17 ,2**1000+3**500 ,5**100+2)

0

Comforting: modpower code and Python pow agree. Phew ...

>>> elapsed("modpower (17 ,2**1000+3**500 ,5**100+2)")

0.00263599999999542

>>> elapsed("modpower (17 ,2**1000+3**500 ,5**100+2)",number =1000)

2.280894000000046

>>> elapsed("pow (17 ,2**1000+3**500 ,5**100+2)",number =1000)

0.7453199999999924

So our code is just three times slower than pow.

16 / 67

Does Modular Exponentiation Have Any Uses?

Applications using modular exponentiation directly (partial list):

I Randomized primality testing.

I Diffie Hellman Key Exchange

I Rivest-Shamir-Adelman (RSA) public key cryptosystem (PKC)

We will discuss the first two topics today.

We leave RSA PKC to the (elective) crypto course.

17 / 67

Intentionally Left Blank

18 / 67

Prime Numbers and Randomized Primality Testing

(figure taken from unihedron site)
19 / 67

http://unihedron.com/projects/primes/index.php

Prime Numbers and Randomized Primality Testing

A prime number is a positive integer, divisible only by 1 and by itself.
So 10, 001 = 73 · 137 is not a prime (it is a composite number), but
10, 007 is.
There are some fairly large primes out there.

http://www.iol.ie/∼tandmfl/mprime.htm

Published in 2000: A prime
number with 2000 digits
(40-by-50 table). By John
Cosgrave, Math Dept, St.
Patrick’s College, Dublin,
Ireland.

20 / 67

http://www.iol.ie/~tandmfl/mprime.htm

Prime Numbers in the News: p = 257885161 − 1

(screenshot from ynet, February 2013)
21 / 67

The Prime Number Theorem

• The fact that there are infinitely many primes was proved
already by Euclid, in his Elements (Book IX, Proposition 20).

• The proof is by contradiction: Suppose there are finitely many
primes p1, p2, . . . , pk. Then p1 · p2 · . . . · pk + 1 cannot be
divisible by any of the pi, so its prime factors are none of the pis.
(Note that p1 · p2 · . . . · pk + 1 need not be a prime itself, e.g.
2 · 3 · 5 · 7 · 11 · 13 + 1 = 30, 031 = 59 · 509.)

• Once we know there are infinitely many primes, we may wonder
how many are there up to an integer x.

• The prime number theorem: A random n bit number is a prime
with probability O(1/n).

• Informally, this means there are heaps of primes of any size, and
it is quite easy to hit one by just picking at random.

22 / 67

Modern Uses of Prime Numbers

• Primes (typically small primes) are used in many algebraic error
correction codes (improving reliability of communication,
storage, memory devices, etc.).

• Primes (always huge primes) serve as a basis for many public key
cryptosystems (serving to improve confidentiality of
communication).

23 / 67

Randomized Testing of Primality/Compositeness

• Now that we know there are heaps of primes, we would like to
efficiently test if a given integer is prime.

• Given an n bits integer m, 2n−1 ≤ m < 2n, we want to
determine if m is composite.

• The search problem, “given m , find all its factors” is believed to
be intractable.

• Trial division factors an n bit number in time O(2n/2). The best
algorithm to date, the general number field sieve algorithm, does
so in O(e8n

1/3
). (In 2010, RSA-768, a “hard” 768 bit, or 232

decimal digits, composite, was factored using this algorithm and
heaps of concurrent hardware.)

• Does this imply that determining if m is prime is also (believed
to be) intractable?

24 / 67

Randomized Primality (Actually Compositeness) Testing

Question: Is there a better way to solve the decision problem (test if
m is composite) than by solving the search problem (factor m)?

Basic Idea [Solovay-Strassen, 1977]: To show that m is composite,
enough to find evidence that m does not behave like a prime.
Such evidence need not include any prime factor of m.

25 / 67

Fermat’s Little Theorem

Let p be a prime number, and a any integer in the range
1 ≤ a ≤ p− 1.

Then ap−1 = 1 (mod p).

26 / 67

Fermat’s Little Theorem, Applied to Primality

By Fermat’s little theorem, if p is a prime and a is in the range
1 ≤ a ≤ p− 1, then ap−1 = 1 (mod p).

Suppose that we are given an integer, m, and for some a in in the
range 2 ≤ a ≤ m− 1, am−1 6= 1 (mod m).

Such a supplies a concrete evidence that m is composite (but says
nothing about m’s factorization).

27 / 67

Fermat Test: Example

Let us show that the following 164 digits integer, m, is composite.
We will use Fermat test, employing the good old pow function.

>>> m=57586096570152913699974892898380567793532123114264532903689671329

43152103259505773547621272182134183706006357515644099320875282421708540

9959745236008778839218983091

>>> a=65

>>> pow(a,m-1,m)

28361384576084316965644957136741933367754516545598710311795971496746369

83813383438165679144073738154035607602371547067233363944692503612270610

9766372616458933005882 # does not look like 1 to me

This proof gives no clue on m’s factorization (but I just happened to
bring the factorization along with me, tightly placed in my backpack:
m = (2271 + 855)(2273 + 5)).

28 / 67

Randomized Primality Testing

• The input is an integer m with n bits (2n−1 < m < 2n)

• Pick a in the range 1 ≤ a ≤ m− 1 at random and independently.

• Check if a is a witness (am−1 6= 1 mod m)
(Fermat test for a,m).

• If a is a witness, output “m is composite”.

• If no witness found, output “m is prime”.

It was shown by Miller and Rabin that if m is composite, then at
least 3/4 of all a ∈ {1, . . . ,m− 1} are witnesses.

29 / 67

Randomized Primality Testing (2)

It was shown by Miller and Rabin that if m is composite, then at
least 3/4 of all a ∈ {1, . . . ,m− 1} are witnesses.

If m is prime, the by Fermat’s little theorem, no a ∈ {1, . . . ,m− 1}
is a witness.

Picking a ∈ {1, . . . ,m− 1} at random yields an algorithm that gives
the right answer if m is composite with probability at least 3/4, and
always gives the right answer if m is prime.

However, this means that if m is composite, the algorithm could err
with probability as high as 1/4.

How can we guarantee a smaller error?

30 / 67

Randomized Primality Testing (3)

• The input is an integer m with n bits (2n−1 < m < 2n)

• Repeat 100 times
I Pick a in the range 1 ≤ a ≤ m− 1 at random and independently.
I Check if a is a witness (am−1 6= 1 mod m)

(Fermat test for a,m).

• If one or more a is a witness, output “m is composite”.

• If no witness found, output “m is prime”.

Remark: This idea, which we term Fermat primality test, is based
upon seminal works of Solovay and Strassen in 1977, and Miller and
Rabin, in 1980.

31 / 67

Properties of Fermat Primality Testing

• Randomized: uses coin flips to pick the a’s.

• Run time is polynomial in n, the length of m.

• If m is prime, the algorithm always outputs “m is prime”.

• If m is composite, the algorithm may err and outputs “m is
prime”.

• Miller-Rabin showed that if m is composite, then at least 3/4 of
all a ∈ {1, . . . ,m− 1} are witnesses.

• To err, all random choices of a’s should yield non-witnesses.
Therefore,

Probability of error <

(
1

4

)100

≪ 1 .

32 / 67

Properties of Fermat Primality Testing, cont.

• To err, all random choices of a’s should yield non-witnesses.
Therefore,

Probability of error <

(
1

4

)100

≪ 1 .

• Note: With much higher probability the roof will collapse over
your heads as you read this line, an atomic bomb will go off
within a 1000 miles radius (maybe not such a great example
back in November 2011), an earthquake of Richter magnitude
7.3 will hit Tel-Aviv in the next 24 hours, etc., etc.

33 / 67

Primality Testing: Simple Python Code
import random # random numbers package

def is_prime(m,show_witness=False):

""" probabilistic test for m’s compositeness """

for i in range (0 ,100):

a = random.randint(1,m-1) # a is a random integer in [1..m-1]

if pow(a,m-1,m) != 1:

if show_witness: # caller wishes to see a witness

print(m," is composite","\n",a," is a witness")

return False

else:

return True

Let us now run this on some fairly large numbers:
>>> is_prime (3**100+126)

False

>>> is_prime (5**100+126)

True

>>> is_prime (7**80 -180)

True

>>> is_prime (7**80 -18)

False

>>> is_prime (7**80+106)

True
34 / 67

Pushing Your Machine to the Limit

You may try to verify that the largest known prime (so far) is indeed
prime. But do take it easy. Even one witness will push your machine
way beyond its computational limit.

It is a good idea to think why this is so.

>>> m=2**57885161 -1

>>> pow(56,m-1,m)==1

patience , young lads!

and even more patience !!

Hint: Think of the complexity of computing ab mod c where all three
numbers are ` bit long. And recall that for this large prime,
` = 57, 885, 161.

35 / 67

Trust, But Check!

We said (quoting Miller and Rabin) that if if m is composite, then at
least 3/4 of all a ∈ {1, . . . ,m− 1} are witnesses.

This is almost true.

There are some annoying numbers, known as Carmichael numbers,
where this does not happen.

However:

• These numbers are very rare and it is highly unlikely you’ll run
into one, unless you really try hard.

• A small (and efficient) extension of Fermat’s test takes care of
these annoying numbers as well.

• If you want the details, you will have to look it up, or take the
elective crypto course.

36 / 67

Primality Testing: Practice and Theory

For all practical purposes, the randomized algorithm based on the
Fermat test (and various optimizations thereof) supplies a
satisfactory solution for identifying primes.

Still the question whether composites / primes can be recognized
efficiently without tossing coins (in deterministic polynomial time, i.e.
polynomial in n, the length in bits of m), remained open for many
years.

37 / 67

Deterministic Primality Testing
In summer 2002, Prof. Manindra Agrawal and his Ph.D. students
Neeraj Kayal and Nitin Saxena, from the India Institute of
Technology, Kanpur, finally found a deterministic polynomial time
algorithm for determining primality. Initially, their algorithm ran in
time O(n12). In 2005, Carl Pomerance and H. W. Lenstra, Jr.
improved this to running in time O(n6).

Agrawal, Kayal, and Saxena received the 2006 Fulkerson Prize and
the 2006 Gödel Prize for their work.

38 / 67

Fermat’s Last Theorem (a cornerstone of Western civilization)

You are all familiar with Pythagorean triplets: Integers a, b, c ≥ 1
satisfying

a2 + b2 = c2

e.g. a = 3, b = 4, c = 5, or a = 20, b = 99, c = 101, etc.

Conjecture: There is no solution to

an + bn = cn

with integers a, b, c ≥ 1 and n ≥ 3.

In 1637, the French mathematician Pierre de Fermat, wrote some
comments in the margin of a copy of Diophantus’ book, Arithmetica.
Fermat claimed he had a wonderful proof that no such solution
exists, but the proof is too large to fit in the margin.

The conjecture mesmerized the mathematics world. It was proved by
Andrew Wiles in 1993-94 (the proof process involved a huge drama).

39 / 67

And Now For Something Completely Different: Encryption

40 / 67

Encryption: Basic Model
Let us welcome the two major players in this field, Alice and Bob
(audience applauds and whistles).

1. Two parties – Alice and Bob.

2. Reliable communication line.

3. Encryption algorithm, E.

4. Decryption algorithm, D.

5. Shared, secret key: kA,B (used both for encryption and
decryption).

6. Goal: send a message M confidentially.

41 / 67

Adversarial Model: Passive Eavesdropper
Enters our third major player, Eve (claps again!).

I Eve attempts to discover information about M

I Eve knows the algorithms E,D

I Eve knows the message space

I Eve has intercepted EkA,B
(M)

I Eve does not know kA,B

42 / 67

Additional Definitions (to complete the picture)

I Plaintext – the message prior to encryption (“attack at dawn”,
“sell short 6.5 billion £”)

I Ciphertext – the message after encryption (“=∂Æ⊥ξεβΞΩΨÅ”,
“jhhfo hjklvhgbljhg”)

43 / 67

Classical, Symmetric Ciphers

• Alice and Bob share the same secret key, kA,B.

• kA,B must be secretly generated and exchanged prior to using
the insecure channel.

Major question, esp. at the internet era: How can Alice and Bob
secretly generate and exchange kA,B if they have never physically
met, they live on antipodal sides of the globe, and all communication
lines are subject to eavesdropping?

44 / 67

New Directions in Cryptography (1976)
“We stand today on the brink of a revolution in cryptography. The
development of cheap digital hardware has freed it from the design
limitations of mechanical computing . . .
. . . such applications create a need for new types of cryptographic
systems which minimize the necessity of secure key distribution . . .
. . . theoretical developments in information theory and computer
science show promise of providing provably secure cryptosystems,
changing this ancient art into a science.”

– W. Diffie and M. Hellman, IEEE IT, vol. 22, no. 6, Nov. 1976.

(figures from Wikipedia)

45 / 67

Diffie and Hellman: New Directions in Cryptography
(reference only)

In their seminal paper “New Directions in Cryptography”, Diffie and
Hellman suggest to split Bob’s secret key k to two parts:

• kE , to be used for encrypting messages to Bob.

• kD, to be used for decrypting messages by Bob.

• kE can be made public and be used by everybody.

This is public key cryptography, or asymmetric cryptography.

Diffie and Hellman suggested the notion of PKC, but had no concrete
implementation.

Public key cryptography is surely not very intuitive at first sight.

However, we will not elaborate on it further. We refer the interested
parties to the elective course in foundations of modern cryptography.

46 / 67

Diffie and Hellman: Public Exchange of Keys

Diffie and Hellman also proposed public exchange of keys.

Here, they did have a concrete implementation, based on the discrete
logarithm problem.

47 / 67

Public Exchange of Keys

• Two parties, Alice and Bob, do not share any secret information.

• They execute a protocol, at the end of which both derive the
same shared, secret key.

• Shared, secret key is kA,B (used both for encryption and
decryption in a classical crypto system).

• A computationally bounded eavesdropper, Eve, who overhears all
communication, cannot obtain the secret key or any new
information about it.

• We assume Eve is passive (only listens).

48 / 67

Discrete Log modulo p and One Way Functions

• Let p be a large prime (say 1024 bits long).

• Let g be a random integer in the range 1 < g < p− 1.

• Let x = gi mod p for some 1 ≤ i < p− 1.

• The inverse operation,
x = gi mod p 7→ i (called discrete log) is believed to be
computationally hard.

• We say that the mapping i−→gi mod p is a one way function.

• This is a computational notion. With unbounded (or even just
exponential) resources, one can invert this function (compute
discrete log).

49 / 67

Diffie and Hellman Key Exchange

• Public parameters: A large prime p (1024 bit long, say) and a
random element g in in the range 1 < g < p− 1.

• Alice chooses at random an integer a from the interval [2..p− 2].
She sends x = ga (mod p) to Bob (over the insecure channel).

• Bob chooses at random an integer b from the interval [2..p− 2].
He sends y = gb (mod p) to Alice (over the insecure channel).

• Alice, holding a, computes ya = (gb)a = gba (mod p).

• Bob, holding b, computes xb = (ga)b = gba (mod p).

• Now both have the shared secret, gba (mod p).

• An eavesdropper cannot infer the key, gba (mod p) after seeing
“only” p, g, x = ga (mod p) and y = gb (mod p)
(under the assumption that discrete log is intractable).

• We have just witnessed a small miracle !

50 / 67

Diffie and Hellman Key Exchange: Artwork

Alice Bob

Secret: random a
 (1< a <p)

Public: Large prime p, large g (1<g<p)

x = ga mod p y = gb mod p

 ya mod p
= (gbmod p)amod p
= gabmod p

 xb mod p
= (gamod p)bmod p
= gabmod p

 computation
(one pow each)

communication
(one mssg each)

Secret: random b
 (1< b <p)

 computation
(one pow each)

communication over
insecure channels

artwork by AR (anonymous researcher)

51 / 67

How to find a prime number

def find_prime(n):

""" find random n-bit long prime """

while(True):

candidate = random.randrange (2**(n-1) ,2**n)

if is_prime(candidate):

return candidate

while(True)??!
Can we be sure to not get into an endless loop?

52 / 67

Diffie and Hellman Key Exchange: Code (Centralized)

def DH_exchange ():

""" generates a shared DH key """

n = int(input("How many bits for the prime number? "))

p = find_prime(n)

print("p =",p, "a large prime")

g = random.randint(2,p-1)

print("g =",g, "random 1<g<p")

a = random.randint(2,p-1)# Alice’s secret

print("a = ? random secret of Alice")

b = random.randint(2,p-1)# Bob’s secret

print("b = ? random secret of Bob")

x = pow(g,a,p) #Alice’s transmission

print("x =",x, "Alice sends to Bob x = g**a%p")

y = pow(g,b,p) #Bob’s transmission

print("y =",y, "Bob sends to Alice y = g**b%p")

key_A = pow(y,a,p) #shared key on Alice’s side

print("key_A =", key_A , "shared key on Alice ’s side y**a%p")

key_B = pow(x,b,p) #shared key on Bob’s side

print("key_B =", key_B , "shared key on Bob’s side x**b%p")

if key_A != key_B:

print("This can’t happen!", key_A , "!=", key_B)

53 / 67

Diffie and Hellman Key Exchange: Execusions

>>> DH_exchange ()

How many bits for the prime number? 3

p = 7 a large prime

g = 5 random 1<g<p

a = ? random secret of Alice

b = ? random secret of Bob

x = 3 Alice sends to Bob x = g**a%p

y = 3 Bob sends to Alice y = g**b%p

key_A = 5 shared key on Alice side y**a%p

key_B = 5 shared key on Bob side x**b%p

54 / 67

Diffie and Hellman Key Exchange: Execusions

>>> DH_exchange ()

How many bits for the prime number? 512

p = 1319049921598484262746941876845907296494048977765024216649913

67572942585710004529705428629627096002415235510640860010092771785

63855377781646396343073541017 a large prime

g = 7272780870089337429057112363372261617130316820154029303050683

05377407893971544976213039660130458320649720201376550732798213396

6886846888122461979750680704 random 1<g<p

a = ? random secret of Alice

b = ? random secret of Bob

x = 7785968545958790532519227950442178582951702760572995758018751

55702302155838838145984587227378389681063720566372771883996237329

7768334277631308708934571117 Alice sends to Bob x = g**a%p

y = 8159250396820790820990349243772713935000006287114663596012586

89131194991000385485326534093840465472068812434295202048363628684

1185771162647833697192551214 Bob sends to Alice y = g**b%p

key_A = 378859962709953138622893466161180858849321812775162234378

61911387204998009090307234329048378327059633811087018072108385535

16828825327545409852223908341625 shared key on Alice side y**a%p

key_B = 378859962709953138622893466161180858849321812775162234378

61911387204998009090307234329048378327059633811087018072108385535

16828825327545409852223908341625 shared key on Bob side x**b%p

55 / 67

Modular Exponentiation: Clarifications

Questions about the order of exponentiation and mod p operations
are often raised.

Well, all the following hold

I ((a mod p) + (b mod p)) mod p = (a+ b) mod p.

I ((a mod p) · (b mod p)) mod p = (a · b) mod p.

I (ga mod p)b mod p = (ga)b mod p.

I (ga mod p)b mod p = (ga)b mod p = gab mod p.

In fact, all these mod p operations are best viewed in the context of
the finite field Z∗

p . But not being familiar with (mathematical)
groups or fields, we have to think anew about mod p each time.

56 / 67

Diffie and Hellman – Final Remarks

• Recall that the length of the prime p in bits is dlog2 pe.
• Computation time for exchanging the key is O(log32 p) bit

operations.

• DH key exchange is at most as secure as discrete log.

• Formal equivalence between DH (Diffie-Hellman key
distribution) and DL (discrete logarithm problem) has never
been proved, though some partial results are known.

• Over the last 36 years there were many attempts to crack the
scheme. None succeeded, and DH key exchange (with an
appropriately large prime p, e.g. 1024 bits) is considered secure.

• U.S. Patent 4,200,770, now expired, describes the algorithm and
credits Hellman, Diffie, and Merkle as inventors.

• And the three of them have joined the Hall of Fame.

57 / 67

http://it.themarker.com/tmit/article/14520

Classical Encryption and Diffie Hellman

1. Two parties – Alice and Bob.
2. Reliable communication line.
3. Encryption algorithm, E.
4. Decryption algorithm, D.
5. Shared, secret key: The shared key ya = xb (mod p) generated

by the Diffie Hellman protocol is used as kA,B in a classical,
secret key crypto system (for both decryption and encryption).

6. Comment: To learn how kA,B is employed in a classical, secret
key crypto system, we refer you to the elective crypto course.

7. We did not explain or exemplify how classical crypto works.
58 / 67

Intentionally Left Blank

59 / 67

Group Theory Background, and Proof of Fermat’s
Little Theorem (for reference only – not for exam)

(photo taken from the Sun)

60 / 67

http://www.thesun.co.uk/sol/homepage/news/politics/4515330/Headteachers-fury-at-GCSE-offer-of-resits-not-regrades.html

Group Theory Background

The next slides describe some (rather elementary) background from
group theory, which is needed to prove Fermat’s little theorem.

For lack of time, nor did we cover this material in class, neither shall
we cover it in the future.

If you are ready to believe Fermat’s little theorem without seeing its
proof, you can skip the next slides. (Don’t worry, be happy: we will
not examine you on this material :=)

If you wish to learn a bit about groups (a beautiful mathematical
topic, which also plays fundamental roles in physics), you are
welcome to keep reading. Hopefully, this material will be covered in
more depth in some future class you’ll take.

61 / 67

A (Relevant) Algebraic Diversion: Groups
A group is a nonempty set, G, together with a “multiplication
operation”, ∗, satisfying the following “group axioms”:

• Closure: For all a, b ∈ G, the result of the operation is also in
the group, a ∗ b ∈ G (∀a∀b∃c a ∗ b = c).

• Associativity: For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c)
(∀a∀b∀c (a ∗ b) ∗ c = a ∗ (b ∗ c)).

• Identity element: There exists an element e ∈ G, such that for
every element a ∈ G, the equation e ∗ a = a ∗ e = a holds
(∃e∀a a ∗ e = e ∗ a = a). This identity element of the group G is
often denoted by the symbol 1.

• Inverse element: For each a in G, there exists an element b in G
such that a ∗ b = b ∗ a = 1 (∀a∃b a ∗ b = b ∗ a = e).

If, in addition, G satisfies

• Commutativity: For all a, b ∈ G, a ∗ b = b ∗a (∀a∀b a ∗ b = b ∗a).

then G is called a multiplicative (or Abelian) group.
62 / 67

A Few Examples of Groups
Non Commutative groups:

I GLn(R), the set of n-by-n invertible (non singular) matrices
over the reals, R, with the matrix multiplication operation .

I n-by-n integer matrices having determinant ±1, with the matrix
multiplication operation (unimodular matrices).

I The collection Sn of all permutations on {1, 2, . . . , n}, with the
function composition operation.

Commutative groups:

• The integers, Z = {. . . ,−2,−1, 0, 1, 2, . . .}, with the addition
operation.

• For any integer, m ≥ 1, the set Zm = {0, 1, 2, . . . m− 1}, with
the addition modulo m operation.

• For any prime, p ≥ 2, the set Z∗
p = {1, 2, . . . p− 1}, with the

multiplication modulo p operation. If p is composite, this Z∗
p is

not a group (check!).

63 / 67

Sub-groups and Lagrange Theorem

• Let (G, ∗) be a group. (H, ∗) is called a sub-group of (G, ∗) if it
is a group, and H ⊂ G.

• Claim: Let (G, ∗) be a finite group, and H ⊂ G. If H is closed
under ∗, then (H, ∗) is a sub-group of (G, ∗).

• Question: What happens in the infinite case?

• Lagrange Theorem: If (G, ∗) is a finite group and (H, ∗) is a
sub-group of it, then |H| divides |G|.

64 / 67

Lagrange Theorem and Cyclic Subgroups

• Let an denote a ∗ a ∗ . . . ∗ a (n times).

• We say that a is of order n if an = 1, but for every m < n,
am 6= 1.

• Claim: Let G be a group, and a an element of order n. The set
〈a〉 = {1, a, . . . , an−1} is a subgroup of G.

• Let G be a group with k elements, a an element of order n.

• Since 〈a〉 = {1, a, . . . , an−1} is a subgroup of G, Lagrange
theorem implies that n | k.

• This means that there is some positive integer ` such that
n` = k.

• Thus ak = an` = (an)` = 1` = 1.

65 / 67

Proof of Fermat’s Little Theorem

• We just saw that Lagrange theorem, for every a ∈ G, the order
of any element a ∈ G divides |G|.

• And thus raising any element a ∈ G to the power |G| yields 1
(the unit element of the group).

• For any prime p, the order of the multiplicative group
a ∈ Z∗

p = {1, . . . , p− 1} is p− 1.

• We thus get Fermat’s “little” theorem: Let p be a prime. For
every a ∈ Z∗

p = {1, . . . , p− 1}, ap−1 mod p = 1.

66 / 67

Fermat’s Little Theorem: Second Proof (more direct)

Let p ≥ 2 be a prime. For every a ∈ Z∗
p , the mapping x 7→ ax

mod p is a one-to-one mapping of Z∗
p onto itself (this follows from

the fact that Z∗
p is a group with respect top multiplication modulo p,

thus every such a ∈ Z∗
p has a multiplicative inverse).

This implies that {a · 1, a · 2, . . . a · (p− 1)} is a rearrangement of
{1, 2, . . . p− 1}. Multiplying all elements in both sets, we get
ap−1 · 1 · 2 · . . . (p− 1) = 1 · 2 · . . . (p− 1) mod p, implying
ap−1 = 1 mod p . ♠

67 / 67

