
DR
AF
T

Computer Science 1001.py, Lecture 21†

Linked Lists; Finite and Infinite Iterators
Introduction to Digital Images

Instructors: Benny Chor, Daniel Deutch

Teaching Assistants: Ilan Ben-Bassat, Amir Rubinstein, Adam
Weinstock

School of Computer Science
Tel-Aviv University

Fall Semester, 2012/13
http://tau-cs1001-py.wikidot.com

† c© Benny Chor.

http://tau-cs1001-py.wikidot.com/

DR
AF
T

Appeals’ Procedure: Clarifications

I We have recently been bombed by chains of appeals:

I The same student submits an appeal on question 2, say.

I Then, later, a separate appeal on question 3.

I Then on question 1, etc.

I (Fortunately this process must end, as we got only a finite
number of questions in each assignment.)

I As of this time, each of you can submit a single, written, well
documented appeal per assignment, within the appeals period.
(so this is applicable to HW 5, 6, 7.)

I In case of utmost need (you are sure the grader’s response to
your appeal is incorrect / not justified / contradicts your freedom
of speech, etc.) you can approach your TA and lay your claims.

2 / 1

DR
AF
T

Lecture 20 Highlights

I Linked Lists

I Iterators and Generators

3 / 1

DR
AF
T

Lecture 21, Plan

I Linked Lists, clarifications

I Iterators vs. Generators.

I Infinite iterators.

I Examples: Merging sorted iterators.

I Digital images: representation.

4 / 1

DR
AF
T

Linked Lists

An alternative to using a contiguous block of memory, is to specify,
for each item, the memory location of the next item in the list.

We can represent this graphically using a boxes-and-pointers diagram:

1 2 3 4

5 / 1

DR
AF
T

Linked Lists vs. Regular Lists: Operations Complexity
(reminder)

I Insertion after a given item requires O(1) time, in contrast to
O(n) for regular lists.

I Deletion of a given item requires O(1) time, in contrast to O(n)
for regular lists.

I Accessing the i-th item requires O(i) time, in contrast to O(1)
for regular lists.

I Finding an item still requires O(n) time, but binary search is not
applicable, even if the list is sorted (why?)

6 / 1

DR
AF
T

Perils of Linked Lists
With linked lists, we are in charge of memory management, and we
may introduce cycles:

>>> L=linked_list ()

>>> L.add_at_end (5)

>>> L.add_at_end (6)

>>> L.next.next.next=L

Can we check if a given list includes a cycle?

7 / 1

DR
AF
T

Detecting Cycles: First Variant

def detect_cycle1(lst):

p=lst.next

dictio ={}

while True:

if (p == None):

return False

elif (p.next in dictio):

return True

else:

dictio[p.next]=1

p = p.next

Note that we are adding the whole list element, both value and
address of the next element (“box” in diagram) to the dictionary, and
not just its contents.

Can we do it more efficiently? In the worst case we may have to
traverse the whole list to detect a cycle, so O(n) time in the worst
case is inherent. But can we detect cycles using just O(1) additional
memory?

8 / 1

DR
AF
T

Detecting cycles: The Tortoise and the Hare Algorithm

def detect_cycle2(lst):

""" The hare moves twice as quickly as the tortoise

Eventually they will both be inside the cycle

and the distance between them will increase by 1 until

it is divisible by the length of the cycle. """

slow = fast = lst

while True:

if slow==None or fast==None:

return False

elif fast.next==None:

return False

slow = slow.next

fast = fast.next.next

print ("lst= ",id(lst),"slow= ",id(slow),"fast= ",id(fast))

if (slow is fast):

return True

Comment: We will (hopefully) see another manifestation of the
tortoise and hare idea, in a completely different context: Pollard’s ρ
algorithm for factoring integers.

9 / 1

DR
AF
T

Detecting cycles: Execution

>>> L=linked_list ()

>>> L.add_at_end (5)

>>> L.add_at_end (6)

>>> detect_cycle1(L)

False

>>> detect_cycle2(L)

False

>>> L.next.next.next=L

>>> detect_cycle1(L)

True

>>> detect_cycle2(L)

True

10 / 1

DR
AF
T

Detecting cycles: Execution, cont.

By commenting out the two print commands, we can explicitly watch
the addresses of lst, slow, fast

>>> L=linked_list ()

>>> L.add_at_end (5)

>>> L.add_at_end (6)

>>> detect_cycle2(L)

lst= 4356349200 slow= 4356349648 fast= 4356349712

False

>>> L.next.next.next=L

>>> detect_cycle2(L)

lst= 4356349200 slow= 4356349648 fast= 4356349712

lst= 4356349200 slow= 4356349712 fast= 4356349648

lst= 4356349200 slow= 4356349200 fast= 4356349200

True

11 / 1

DR
AF
T

Detecting cycles: A Weird Case

Last class, the following way of creating a cyclical linked list was
attempted during the lecture.

>>> L=linked_list ()

>>> L.add_at_end (5)

>>> L.add_at_end (6)

>>> L.add_at_end(L)

Running both cycle detection algorithms on this list produces False.

>>> detect_cycle1(L)

False

>>> detect_cycle2(L)

lst= 4356349904 slow= 4356349776 fast= 4356349840

lst= 4356349904 slow= 4356349840 fast= 4296614560

False

On the other hand, if we try to print this list, we run into an infinite
loop.

12 / 1

DR
AF
T

Detecting cycles: A Weird Case, cont.

Is this a bug or a feature?

>>> L=linked_list ()

>>> L.add_at_end (5)

>>> L.add_at_end (6)

>>> L.add_at_end(L)

What was created not a “cycle” in the standard sense. Our code
follows the .next pointer, and it only looks for cycles created by
going along these pointers.

So this is neither a bug, nor a feature. The code did what it was
meant to do. We can definitely modify it so it does catch such
scenarios, but we won’t!

Life (and programming) are full of unexpected dangers, yet we try to
avoid the dangers and fully enjoy both...

13 / 1

DR
AF
T

And Now to Something Completely Different:
Iterators and Generators

Source: http://xkcd.com/1154

14 / 1

http://xkcd.com/1154/

DR
AF
T

Iterators and Generators

I Linked lists and Python’s built-in lists (arrays) are two ways to
represent a collection of elements. There are others, such as
trees, dictionaries, and more. The same abstract data type
(students, books,...) can be captured using any of these
representations.

I It is desirable that functions that use the data as part of a
computation should be as oblivious as possible to such internal
representation, which may change over time.

I This general idea is captured in a concrete way by Python’s
iterators.

I Iterators will provide a generic access to a collection of items. So
generic that it will even allow us to access an infinite collection
(also known as stream)!

I Python’s generators are tools to create iterators.

15 / 1

DR
AF
T

Iterables

An iterable is an object capable of returning its members one at a
time. Examples of iterables include all sequence types (such as list,
str, and tuple), some non-sequence types like dict and file, and
objects of any user defined classes with an iter () or
getitem () method.

(see http://docs.python.org/dev/glossary.html#term-iterator)

range is a special iterable class.

>>> a=range (10)

>>> type(a)

<class ’range’>

>>> a

range(0, 10)

>>> a[2]

2

16 / 1

http://docs.python.org/dev/glossary.html#term-iterator

DR
AF
T

Iterators (reminder)
An iterator is an object representing a stream of data. Repeated calls
to the iterators next () method (or passing it to the built-in
function next()) return successive items in the stream. When no
more data are available a StopIteration exception is raised instead. At
this point, the iterator object is “exhausted”, and any further calls to
its next () method just raise StopIteration exception again.

(see http://docs.python.org/dev/glossary.html#term-iterator)

>>> it=iter ([0,1,2])

>>> next(it)

0

>>> next(it)

1

>>> next(it)

2

>>> next(it)

Traceback (most recent call last):

File "<pyshell #26>", line 1, in <module >

next(it)

StopIteration

17 / 1

http://docs.python.org/dev/glossary.html#term-iterator

DR
AF
T

Iterables and Iterators (reminder)
An iterable object (such as a list, tuple, str, dict, range,
etc.) can be made into an iterator by calling the function iter. This
function does not modify the original iterable object. In fact, when
we loop over an iterable using for, an iterator is created first, and
then the items are called, one by one, using next().
>>> table={"benny":72,"rani":82,"raanan":92}

>>> next(table)

Traceback (most recent call last):

File "<pyshell #13>", line 1, in <module >

next(table)

TypeError: dict object is not an iterator

>>> it=iter(table)

>>> next(it)

’rani’

>>> next(it)

’benny’

>>> next(it)

’raanan ’

>>> next(it)

Traceback (most recent call last):

File "<pyshell #18>", line 1, in <module >

next(it)

StopIteration 18 / 1

DR
AF
T

Generators for Infinite Streams

Iterators and generators represent streams, but produce only one
element at a time. Therefore, there is no problem representing a 2100

long stream.

In fact, there is no problem representing streams with countably
many elements. To do that, we will introduce generator functions.

So far, our functions contained no state, or memory. Successive calls
to the function with the same arguments produced the same results.
This is now going to change.

def natural ():

""" a generator for all natural numbers """

n=1

while True:

yield n

n+=1

19 / 1

DR
AF
T

Generators for Infinite Streams, cont.
So far, our functions contained no state, or memory. Successive calls
to the function with the same arguments produced the same results.
This is now going to change.

def natural ():

""" a generator for all natural numbers """

n=1

while True:

yield n

n+=1

A function that contains a yield statement is termed a generator
function. When a generator function is called, the actual arguments
are bound to function–local formal argument names in the usual way,
but no code in the body of the function is executed. Instead, a
generator–iterator object is returned.
>>> natural ()

<generator object natural at 0x16f60d0 >

>>> Nat=natural ()

>>> Nat

<generator object natural at 0x16f60a8 >

20 / 1

DR
AF
T

Generators, cont.
>>> Nat=natural ()

>>> Nat

<generator object natural at 0x16f60a8 >

Nat is a generator–iterator. To get its “returned value”, which is
specified by the yield statement, we invoke next.

>>> next(Nat)

1

>>> next(Nat)

2

>>> [next(Nat) for i in range (10)]

[3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

We see that Nat has a state, which is retained, unchanged, between
successive calls.
We can have additional instances of the same generator function.

>>> Nat2=natural ()

>>> next(Nat2)

1

>>> next(Nat)

13

21 / 1

DR
AF
T

A Fibonacci Numbers Generator

def fib():

""" a generator for all Fibonacci numbers """

a, b = 0, 1

while True:

yield b

a, b = b, a+b

>>> Fib=fib()

>>> Fib

<generator object fib at 0x1704fa8 >

Again, Fib is a generator–iterator, so to get its “returned value”,
which is specified by the yield statement, we invoke next().

>>> next(Fib)

1

>>> next(Fib)

1

>>> next(Fib)

2

>>> [next(Fib) for i in range (10)]

[3, 5, 8, 13, 21, 34, 55, 89, 144, 233]

22 / 1

DR
AF
T

Execution Specification

If a yield statement is encountered, the state of the function is frozen,
and the value of expression list is returned to the caller of next ().
By ”frozen” we mean that all local state is retained, including the
current bindings of local variables, the instruction pointer, and the
internal evaluation stack: enough information is saved so that the
next time next() is invoked, the function can proceed exactly as if
the yield statement were just another external call.

(see http://www.python.org/dev/peps/pep-0255/)

23 / 1

http://www.python.org/dev/peps/pep-0255/

DR
AF
T

Merging Sorted, Infinite Iterators

Suppose iter1 and iter2 are sorted iterators, and both are infinite.
We wish to produce a new sorted iterator which is the merge of both.

def merge(iter1 ,iter2):

""" on input iter1 , iter2 , two infinite orted iterators ,

produces the sorted merge of the two iterators """

left=next(iter1)

right=next(iter2)

while True:

if left <right:

yield(left)

left=next(iter1)

else:

yield(right)

right=next(iter2)

>>> Nat1=natural ()

>>> Nat2=natural ()

>>> Nat3=merge(Nat1 ,Nat2)

24 / 1

DR
AF
T

Merging Sorted, Infinite iterators: Execution

Nat3, too is a generator–iterator, so to get its “returned value”,
which is specified by the yield statement, we invoke next.

>>> next(Nat3)

1

>>> next(Nat3)

1

>>> next(Nat3)

2

>>> next(Nat3)

2

>>> [next(Nat3) for i in range (10)]

[3, 3, 4, 4, 5, 5, 6, 6, 7, 7]

25 / 1

DR
AF
T

An Attempt to Merge Sorted, Finite iterators
Should the iterators in merge really be infinite?
>>> Nat1=natural ()

>>> Nat2=(n-2 for n in range (3))

>>> Nat3=merge(Nat1 ,Nat2)

>>>

>>> next(Nat3)

-2

>>> next(Nat3)

-1

>>> next(Nat3)

0

>>> next(Nat3)

Traceback (most recent call last):

File "<pyshell #48>", line 1, in <module >

next(Nat3)

File "/Users/benny/Documents/InttroCS2011/Code/intro17/lecture17.py", line 30, in merge

right=next(iter2)

StopIteration

What went wrong is that the merged iterator was not yet exhausted,
yet one of the arguments to merge, Nat2 was exhausted. The
merging procedure still invoked next(iter2). This has caused a
StopIteration error.

26 / 1

DR
AF
T

Handling Errors: try and except

Python provides an elaborate mechanism to handle run time errors.
For example, division by zero causes a ZeroDivisionError.

>>> 5/0

Traceback (most recent call last):

File "<pyshell #37>", line 1, in <module >

5/0

ZeroDivisionError: int division or modulo by zero

Such errors disrupt the flow of control in a program execusion. We
may want to detect such error and allow the flow of control to
continue. This may not be so important in the small programs written
in this course, but becomes meaningful in large software projects.
Python enables such detection, using the keywords try and except.

def division(a,b):

try:

return a/b

except ZeroDivisionError:

print("division by zero")

27 / 1

DR
AF
T

Handling Errors: try and except, cont.

def division(a,b):

try:

return a/b

except ZeroDivisionError:

print("division by zero")

Let us now apply this function in two different cases:

>>> division (5,6)

0.8333333333333334

>>> division (5,0)

division by zero

We will employ this error handling mechanism to enable merging any
non-empty sorted iterators, finite or infinite.

28 / 1

DR
AF
T

Merging Any Non-Empty, Sorted iterators
def merge3(iter1 ,iter2):

""" on input iter1 , iter2 , two non -empty sorted iterators , not

necessarily infinite , produces sorted merge of the two iterators """

left=next(iter1)

right=next(iter2)

while True:

if left <right:

yield(left)

try:

left=next(iter1)

except StopIteration: # iter1 is exhausted

yield(right)

remaining=iter2

break

else:

yield(right)

try:

right=next(iter2)

except StopIteration: # iter2 is exhausted

yield(left)

remaining=iter1

break

for elem in remaining:

yield(elem) 29 / 1

DR
AF
T

Merge3: Examples of Executions
>>> iter1=(x**2 for x in range (4))

>>> iter2=natural ()

>>> merged=merge3(iter1 ,iter2)

>>> [next(merged) for i in range (14)]

[0, 1, 1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 9, 10]

>>> iter1=(x**2 for x in range (5))

>>> iter2=(x**3 for x in range (6))

>>> merged=merge3(iter1 ,iter2)

>>> [next(merged) for i in range (11)]

[0, 0, 1, 1, 4, 8, 9, 16, 27, 64, 125]

Finally, lets see what happens when the original iterators/generators
are not sorted.
>>> iter1 =((-1)**x*x**2 for x in range (5))

>>> iter2=(x**3 for x in range (6))

>>> merged=merge3(iter1 ,iter2)

>>> [next(merged) for i in range (11)]

[0, 0, -1, 1, 4, -9, 8, 16, 27, 64, 125]

garbage in, garbage out

30 / 1

DR
AF
T

And Now to Something Completely Different:
Digital Images Representation

31 / 1

DR
AF
T

Digital Images Representation

By now, we all know what this is a part of.

[183, 148, 143, 181, 178, 156, 165, 126, 123, 181, 189, 148, 139, 135, 142]

[178, 138, 138, 175, 158, 147, 179, 171, 168, 173, 147, 117, 127, 139, 139]

[168, 176, 123, 147, 142, 161, 165, 176, 140, 154, 125, 136, 169, 122, 99]

[161, 173, 127, 147, 154, 144, 161, 170, 122, 113, 105, 138, 177, 175, 104]

[164, 200, 162, 158, 167, 111, 151, 174, 140, 115, 117, 141, 133, 146, 140]

[170, 208, 171, 158, 204, 152, 158, 182, 159, 126, 138, 169, 134, 147, 157]

[171, 219, 170, 140, 199, 166, 143, 157, 134, 106, 123, 164, 129, 129, 133]

[192, 232, 180, 156, 200, 181, 149, 168, 140, 130, 144, 167, 135, 120, 125]

[160, 154, 122, 157, 194, 181, 145, 175, 122, 124, 141, 148, 144, 144, 128]

[165, 145, 140, 205, 197, 150, 157, 197, 124, 128, 144, 133, 145, 162, 111]

[199, 160, 172, 174, 175, 184, 136, 156, 125, 108, 135, 145, 133, 121, 129]

[234, 215, 218, 193, 159, 129, 104, 137, 135, 118, 141, 156, 135, 122, 126]

[254, 199, 160, 142, 163, 168, 163, 147, 140, 127, 144, 151, 127, 144, 109]

[173, 152, 173, 188, 199, 175, 182, 124, 117, 116, 141, 154, 122, 150, 126]

[154, 163, 200, 206, 197, 172, 142, 102, 124, 128, 155, 180, 138, 142, 139]

32 / 1

DR
AF
T

Brief “Historical” Context

At the early days of personal computers, say in the early 1980s,
processors were relatively slow and quite expensive. Memory was
even more expensive in relative terms.

Early e-mail (1970s to early 1980s) messages were plain ascii texts.

The situation is reflected by the following saying, often attributed
(apparently incorrectly) to Bill Gates, in 1981:
“640KB ought to be enough for anybody”.

This was supposedly said when talking about IBM PC’s 640KB RAM,
which was a significant breakthrough over the previous 8-bit systems
that were typically limited to 64KB RAM.

33 / 1

DR
AF
T

A Brief Context, 30 Some Years Later

With the proliferation of strong, inexpensive processors, larger and
faster RAMs, and especially of large, non-volatile memory chips (e.g.
flash memory, commercialized from mid 1990s) it became possible to
efficiently store, process, and transmit large digital images.

Facebook has stored 60 billion photos by the end of 2010. This
number is expected to become 100 billion by summer 2011.
(Consequently, it was called “the biggest image junk yard”.)

By way of comparison, Photobucket stored 8 billion photos by 2010
end, Picasa 7 billion, and Flickr 5 billion. (source: this web page.)

34 / 1

http://www.bitrebels.com/social/facebook-photos-the-astonishing-stats-infographic/

DR
AF
T

Basic Model of a Digital Image

A digital image is typically encoded as a k-by-` rectangle, or matrix,
M , of either grey–level or color values.

For videos (movies), there is a third dimension, “time”. For each
point t sampled in time, the frame at time t is nothing but a
“regular” image.

35 / 1

DR
AF
T

Basic Model of a Digital Image, cont.

Each element M [x, y] of the image is called a pixel, shorthand for
picture element. For grey level images, M [x, y] is a non negative real
number, representing the light intensity at the pixel. For standard
(RGB) color images, M [x, y] is a triplet of values, representing the
red, green, and blue components of the light intensity at the pixel.

(images from Wikipedia)

36 / 1

DR
AF
T

Grey Level Images

For the sake of simplicity, the remaining of this presentation will deal
with grey scale images only. However, what we will do is applicable
to color images as well.

To enable representation on bounded precision, digital devices, real
numbers expressing grey levels have to be discretized.

A good quality photograph (that is, good by human visual inspection)
has 256 grey-level values (8 bits) per pixel.,The value 0 represents
black, while 255 represents white (not very intuitive, I agree :-).

For each pixel, the closer its value is to 0, the blacker it is. So 128 is
a perfect grey.

We remark that in some applications, such as medical imaging, 4096
grey levels (12 bit) are used.

37 / 1

DR
AF
T

Loading and Displaying Images
Our matrix.py package has (rather simple) methods for loading a
digital image (making it into an instance of the Matrix class and
displaying them.
m=Matrix.load("abbey_road.bitmap")

>>> m=Matrix.load("abbey_road.bitmap")

>>> m.display ()

This opens a new, graphical window.
To run additional code in the shell, this window has to be closed first.

38 / 1

DR
AF
T

Loading and Displaying Images, cont.

In the display method, we can zoom in (but zoom factor has to be an
integer)

>>> m=Matrix.load("abbey_road.bitmap")

>>> m=Matrix.load("abbey_road.bitmap")

>>> m.display(zoom =3)

>>> m.display(zoom =2)

>>> m.display(zoom =1.5)

Traceback (most recent call last):

File "<pyshell #38>", line 1, in <module >

m.display(zoom =1.4)

File "/Users/benny/Dropbox/Eshnav2012/Code/Eshnav10/matrix.py", line 199, in display

tl = tk_worker(root)

File "/Users/benny/Dropbox/Eshnav2012/Code/Eshnav10/matrix.py", line 183, in tk_worker

pi = pi.zoom(zoom)

File "/Library/Frameworks/Python.framework/Versions /3.2/ lib/python3 .2/ tkinter/__init__.py", line 3249, in zoom

self.tk.call(destImage , ’copy’, self.name , ’-zoom’,x,y)

_tkinter.TclError: expected integer but got "1.5"

39 / 1

DR
AF
T

Grey Level Images - Another Example

>>> Albert=Matrix.load("albert -einstein -1951. bitmap")

>>> Albert.display(zoom =2)

>>> Albert.display ()

>>> Tongue=Albert [260:300 ,130:160]

a slice of the original

>>> T.display(zoom =6)

>>> Tongue.dim()

(40, 30)

40 / 1

DR
AF
T

The Tongue, in Numbers

>>> Tongue=Albert [260:300 ,130:160]

a slice of the original

>>> T.display(zoom =6)

>>> Tongue.dim()

(40, 30)

>>> for i in range (40):

print([T[i,j] for j in range (30)])

41 / 1

DR
AF
T

A Grey Level Image and a Slice Thereof

42 / 1

DR
AF
T

Tinkering with a Real Image: Lena

for i in range (100):

for j in range (100):

Lena[i,j]=0

Lena.display ()

black square at upper left corner

(this operator is applicable to any grey level image whose dimensions
are at least 512-by-512.)

43 / 1

DR
AF
T

Tinkering with a Real Image: Lena, cont.

for i in range (200 ,300):

for j in range (200 ,300):

Lena[i,j]=128

Lena.display ()

for i in range (412 ,512):

for j in range (412 ,512):

Lena[i,j]= 255

Lena.display ()

black square at upper left corner

grey square at middle

white square at lower right corner

44 / 1

DR
AF
T

Simple Synthetic Images: Lines and More

horizontal_lines=Matrix (512 ,512)

for x in range (412):

if x % 2 == 0:

for y in range (512):

horizontal_lines[x,y]=255

horizontal_lines.display ()

horizontal_lines.display(zoom =2)

45 / 1

DR
AF
T

Displaying Synthetic Images: Lines and More

46 / 1

DR
AF
T

Simple Synthetic Images: Lines and More

abs_cont=Matrix (512 ,512)

for x in range (512):

for y in range (512):

abs_cont[x,y]=1.5*(abs(x -256)+ abs(y -256))

abs_cont.display ()

abs_cont.display(zoom =2)

for x in range (512):

for y in range (512):

abs_cont[x,y]=1.5*(abs(x -256)+ abs(y -256)) % 256

abs_cont.display ()

abs_cont.display(zoom =2)

47 / 1

DR
AF
T

Displaying Synthetic Images: Lines and More

48 / 1

DR
AF
T

Simple Synthetic Images: Scaling Lines

A= Matrix (512 ,512)

B= Matrix (512 ,512)

C= Matrix (512 ,512)

for i in range (512):

for j in range (512):

A[i,j]=(i+j -512) % 256

A.display ()

for i in range (512):

for j in range (512):

B[i,j]=2*(i+j -512) % 256

B.Display ()

for i in range (512):

for j in range (512):

C[i,j]=4*(i+j -512) % 256

C.display ()

49 / 1

DR
AF
T

Simple Synthetic Images: Circles and More

Circ256=Matrix (512 ,512)

for i in range (512):

for j in range (512):

Cirtc256[i,j]=((i -256)**2+(j -256)**2)//256

Circ256.display ()

Circ16=Matrix (512 ,512)

for i in range (512):

for j in range (512):

Circ16[i,j]=((i -256)**2+(j -256)**2)//16

Circ16.display ()

Circ4=Matrix (512 ,512)

for i in range (512):

for j in range (512):

Circ4[i,j]=((i -256)**2+(j -256)**2)//4

Circ4.display ()

We urge you to try these (and other) functions by yourself.

50 / 1

DR
AF
T

Simple Synthetic Images: Miscellaneous
import sys

import math

import random

import cmath # complex numbers

A=Matrix (512 ,512)

B= Matrix (512 ,512)

C= Matrix (512 ,512)

for i in range (512):

for j in range (512):

A[i,j]=(math.sin ((i -256)**2 + (j -256)**2)* 16) % 256

A.display ()

for i in range (512):

for j in range (512):

B[i,j]=256* math.sin (25* cmath.phase(complex(i-256,j -256))) % 256

B.display

for i in range (512):

for j in range (512):

C[i,j]= random.randint (0 ,255)

C.display ()

We urge you to try these (and other) functions by yourself.
51 / 1

DR
AF
T

Blur
The two major effects hampering image accuracy are termed blur and
noise. Blur is an intrinsic phenomenon to digital image acquisition,
resulting from limits on sampling rates. Blur has the effect of
reducing the image’s high-frequency components. To really
understand it, a non negligible knowledge about signal processing is
required. It is completely outside the scope of this course (and,
unfortunately, of general CS studies as well).

An original image (left) and a blurred version thereof (right). Taken from

Wikipedia (which ran out of the “gidday mate” version).

52 / 1

DR
AF
T

Edges
Images of interest are usually not completely smooth. While most
areas are smooth, parts of images exhibit sharp changes in intensity
from one pixel to the next. These boundaries are termed edges, and
often capture much of the meaningful information in an image.

The problem of edge detection is a central problem in image
processing, and many algorithms attempt to solve it.

An original image (of the world famous Lena) (center), and the results of two

different edge detection algorithms (Sobel, left and Laplacian, right). Images

taken from http://www.pages.drexel.edu/∼weg22/edge.html.
53 / 1

http://www.pages.drexel.edu/~weg22/edge.html

DR
AF
T

Built in Filters in Python Image Library (PIL)

The PIL package has a number of built in filters. For example, it has
a contours finding filter, whose result is shown here.

(see http://www.riisen.dk/dop/pil.html)

54 / 1

http://www.riisen.dk/dop/pil.html

